A279571 Number of length n inversion sequences avoiding the patterns 100, 101, and 201.
1, 1, 2, 6, 22, 92, 424, 2106, 11102, 61436, 353980, 2110366, 12955020, 81569168, 525106698, 3447244188, 23028080268, 156246994264, 1075127143948, 7492458675666, 52820934349420, 376331681648402, 2707312468516446, 19650530699752470, 143807774782994412, 1060472244838174574, 7875713244761349666, 58876660310205135380, 442862775457168812898, 3350397169412102710198
Offset: 0
Keywords
Examples
The length 4 inversion sequences avoiding (100,101,201) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0102, 0103, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..32
- Megan A. Martinez, Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
Crossrefs
Programs
-
Maple
b:= proc(n, i, s, m) option remember; `if`(n=0, 1, add(b(n-1, i+1, s minus {$j..m- `if`(j=m, 1, 0)} union {i+1}, max(m, j)), j=s)) end: a:= n-> b(n, 1, {1}, 0): seq(a(n), n=0..15); # Alois P. Heinz, Feb 22 2017
-
Mathematica
b[n_, i_, s_, m_] := b[n, i, s, m] = If[n == 0, 1, Sum[b[n-1, i+1, s ~Complement~ Range[j, m - If[j == m, 1, 0]] ~Union~ {i+1}, Max[m, j]], {j, s}]]; a[n_] := b[n, 1, {1}, 0]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 27 2017, after Alois P. Heinz *)
Extensions
a(10)-a(25) from Alois P. Heinz, Feb 22 2017
a(26)-a(29) from Vaclav Kotesovec, Oct 07 2021
Comments