A279644 a(n) is the n-th term of the exponential transform of the n-th powers.
1, 1, 5, 52, 1445, 104116, 16379797, 6067246144, 5270005429705, 9832425683734288, 40944833826904310921, 384044953998005246634304, 7656468877618298485395299533, 332312769563869315072667521436992, 31885558406529826494376921134421228189
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..76
- Wikipedia, Kronecker delta
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(binomial(n-1, j-1)*j^k*b(n-j, k), j=1..n)) end: a:= n-> b(n$2): seq(a(n), n=0..15);
-
Mathematica
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[Binomial[n-1, j-1]*j^k*b[n-j, k], {j, 1, n}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jun 01 2018, from Maple *)
Formula
a(n) = n! * [x^n] exp(exp(x)*(Sum_{j=0..n} Stirling2(n,j)*x^j) - delta_{0,n}).
Comments