cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A279663 a(n) = (5/6)^n*Gamma(n+3/5)*Gamma(n+1)*Gamma(n+2)/Gamma(3/5).

Original entry on oeis.org

1, 1, 8, 208, 12480, 1435200, 281299200, 86640153600, 39507910041600, 25482601976832000, 22424689739612160000, 26147188236387778560000, 39429959860472770068480000, 75350653293363463600865280000, 179334554838205043370059366400000, 523656900127558726640573349888000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 16 2016

Keywords

Comments

Heptagonal pyramidal factorial numbers.

Crossrefs

Cf. A002413.
Cf. A084940 (heptagonal factorial numbers).
Cf. A087047 (tetrahedral factorial numbers), A135438 (square pyramidal factorial numbers), A167484 (pentagonal pyramidal factorial numbers), A279662 (hexagonal pyramidal factorial numbers).

Programs

  • Magma
    [Round((5/6)^n*Gamma(n+3/5)*Gamma(n+1)*Gamma(n+2)/Gamma(3/5)): n in [0..20]]; // Vincenzo Librandi Dec 17 2016
  • Mathematica
    FullSimplify[Table[(5/6)^n Gamma[n + 3/5] Gamma[n + 1] Gamma[n + 2]/Gamma[3/5], {n, 0, 15}]]

Formula

a(n) = Product_{k=1..n} k*(k + 1)*(5*k - 2)/6, a(0)=1.
a(n) = Product_{k=1..n} A002413(k), a(0)=1.
a(n) ~ (2*Pi)^(3/2)*(5/6)^n*n^(3*n+21/10)/(Gamma(3/5)*exp(3*n)).
Showing 1-1 of 1 results.