A279684 The maximum number of coins that can be processed in n weighings that all are real except for one LHR-coin starting in the heavy or real state.
1, 3, 5, 15, 37, 87, 205, 495, 1173, 2759, 6493, 15263, 35749, 83575, 195181, 455247, 1060533, 2468391, 5740925, 13342975, 30993349, 71956951, 166991501, 387397551, 898427605, 2083016071, 4828379549, 11189823071, 25928070117, 60069313847, 139148806829
Offset: 0
Keywords
Examples
If we have two weighings we are not allowed to have outcomes that consist of two imbalances. That means a(2) = 9 - 4 = 5. If we have three weighings we are not allowed the following outcomes: <<=, <<<, where any less-than sign can be interchanged with a greater-than sign. Thus a(3) = 27 - 4 - 8 = 15.
Links
- Tanya Khovanova and Konstantin Knop, Coins that Change Their Weights, arXiv:1611.09201 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (3, -1, 1, -2, -8).
Programs
-
Magma
I:=[1,3,5,15,37]; [n le 5 select I[n] else 3*Self(n-1)- Self(n-2)+Self(n-3)-2*Self(n-4)-8*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 16 2016
-
Mathematica
LinearRecurrence[{3, -1, 1, -2, -8}, {1, 3, 5, 15, 37}, 30]
Formula
a(n) = 3a(n-1) - a(n-2) + a(n-3) - 2a(n-4) - 8a(n-5).
G.f.: (1 - 3*x^2 + 2*x^3 - 4*x^4)/((1 + x)*(1 - 2*x)*(1 - 2*x + x^2 - 4*x^3)). - Ilya Gutkovskiy, Dec 17 2016
Comments