cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279715 Expansion of a q-series used by Ramanujan in his Lost Notebook.

Original entry on oeis.org

1, 2, 4, 6, 10, 16, 23, 34, 50, 70, 98, 136, 184, 250, 336, 444, 586, 768, 997, 1290, 1660, 2120, 2698, 3420, 4310, 5414, 6776, 8442, 10488, 12986, 16020, 19710, 24180, 29574, 36082, 43910, 53293, 64538, 77980, 94000, 113082, 135760, 162648, 194502, 232164
Offset: 0

Views

Author

Michael Somos, Dec 17 2016

Keywords

Examples

			G.f. = 1 + 2*x + 4*x^2 + 6*x^3 + 10*x^4 + 16*x^5 + 23*x^6 + 34*x^7 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, page 1, 1st equation with a=1.

Crossrefs

Cf. A256209.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[x^k* (&*[(1+x^j): j in [0..k]])/(&*[(1-x^(2*s+1)): s in [0..k]]) : k in [0..(m+2)]])/2  )); // G. C. Greubel, Nov 12 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[ Sum[ x^k QPochhammer[ -x, x, k] / QPochhammer[ x, x^2, k + 1] // FunctionExpand, {k, 0, n}], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum(k=0, n, x^k * prod(i=1, k, 1 + x^i, 1 + A) / prod(i=1, k+1, 1 - x^(2*i-1), 1 + A), A), n))};
    

Formula

G.f.: Sum_{k>=0} x^k * (1 + x) * (1 + x^2) * ... * (1 + x^k) / ((1 - x) * (1 - x^3) * ... * (1 - x^(2*k+1))).