A279715 Expansion of a q-series used by Ramanujan in his Lost Notebook.
1, 2, 4, 6, 10, 16, 23, 34, 50, 70, 98, 136, 184, 250, 336, 444, 586, 768, 997, 1290, 1660, 2120, 2698, 3420, 4310, 5414, 6776, 8442, 10488, 12986, 16020, 19710, 24180, 29574, 36082, 43910, 53293, 64538, 77980, 94000, 113082, 135760, 162648, 194502, 232164
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 4*x^2 + 6*x^3 + 10*x^4 + 16*x^5 + 23*x^6 + 34*x^7 + ...
References
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, page 1, 1st equation with a=1.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A256209.
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[x^k* (&*[(1+x^j): j in [0..k]])/(&*[(1-x^(2*s+1)): s in [0..k]]) : k in [0..(m+2)]])/2 )); // G. C. Greubel, Nov 12 2018 -
Mathematica
a[ n_] := SeriesCoefficient[ Sum[ x^k QPochhammer[ -x, x, k] / QPochhammer[ x, x^2, k + 1] // FunctionExpand, {k, 0, n}], {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum(k=0, n, x^k * prod(i=1, k, 1 + x^i, 1 + A) / prod(i=1, k+1, 1 - x^(2*i-1), 1 + A), A), n))};
Formula
G.f.: Sum_{k>=0} x^k * (1 + x) * (1 + x^2) * ... * (1 + x^k) / ((1 - x) * (1 - x^3) * ... * (1 - x^(2*k+1))).