A279785 Number of ways to choose a strict partition of each part of a strict partition of n.
1, 1, 1, 3, 4, 7, 11, 18, 28, 47, 71, 108, 166, 252, 382, 587, 869, 1282, 1938, 2832, 4153, 6148, 8962, 12965, 18913, 27301, 39380, 56747, 81226, 115907, 166358, 236000, 334647, 475517, 671806, 947552, 1335679, 1875175, 2630584, 3687589, 5150585, 7183548
Offset: 0
Keywords
Examples
The a(6)=11 twice-partitions are: ((6)), ((5)(1)), ((51)), ((4)(2)), ((42)), ((41)(1)), ((3)(2)(1)), ((31)(2)), ((32)(1)), ((321)), ((21)(2)(1)).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..5000 from Alois P. Heinz)
- Gus Wiseman, Sequences enumerating triangles of integer partitions
Programs
-
Maple
with(numtheory): g:= proc(n) option remember; `if`(n=0, 1, add(add( `if`(d::odd, d, 0), d=divisors(j))*g(n-j), j=1..n)/n) end: b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1, b(n, i-1)+`if`(i>n, 0, g(i)*b(n-i, i-1)))) end: a:= n-> b(n$2): seq(a(n), n=0..70); # Alois P. Heinz, Dec 20 2016
-
Mathematica
nn=20;CoefficientList[Series[Product[(1+PartitionsQ[k]x^k),{k,nn}],{x,0,nn}],x] (* Second program: *) g[n_] := g[n] = If[n==0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n]; b[n_, i_] := b[n, i] = If[n > i*(i + 1)/2, 0, If[n==0, 1, b[n, i-1] + If[i>n, 0, g[i]*b[n-i, i-1]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Feb 07 2017, after Alois P. Heinz *)
Formula
G.f.: Product_{k>0} (1 + A000009(k)*x^k). - Seiichi Manyama, Nov 14 2018
Comments