cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279911 a(n) = Sum_{i=1..n} denominator(n^i/i).

Original entry on oeis.org

0, 1, 2, 4, 6, 11, 10, 22, 22, 31, 28, 56, 36, 79, 58, 72, 86, 137, 80, 172, 112, 145, 148, 254, 146, 261, 208, 274, 230, 407, 182, 466, 342, 375, 360, 448, 322, 667, 456, 528, 444, 821, 384, 904, 592, 635, 676, 1082, 574, 1051, 692, 924, 836, 1379, 732, 1154, 912, 1153
Offset: 0

Views

Author

Wesley Ivan Hurt, Dec 22 2016

Keywords

Crossrefs

Cf. A279912.

Programs

  • Magma
    [0] cat [&+[Denominator(n^i/i):i in [1..n]]:n in [1..60]]; // Marius A. Burtea, Jul 29 2019
  • Maple
    A279911:=n->add(denom(n^i/i), i=1..n): seq(A279911(n), n=0..100);
  • PARI
    a(n) = sum(k=1, n, if(gcd(n,k) == 1, k, denominator(n^k/k))); \\ Daniel Suteu, Jul 28 2019
    
  • PARI
    a(n) = sum(k=1, n, if(gcd(n,k) == 1, k, vecmax(select(d->gcd(d, n) == 1, divisors(k))))); \\ Daniel Suteu, Jul 28 2019
    
  • PARI
    a(n) = my(f=factor(n)[,1]); sum(k=1, n, if(gcd(n, k) == 1, k, gcd(vector(#f, j, k / f[j]^valuation(k, f[j]))))); \\ Daniel Suteu, Jul 29 2019
    

Formula

From Daniel Suteu, Jul 28 2019: (Start)
a(prime(n)) = A072205(n).
a(p^k) = (p^(2*k+1) + p + 2) / (2*(p+1)), for prime powers p^k.
a(n) = Sum_{k=1..n} gcd(m, k), where m = A095996(n).
a(n) = Sum_{k=1..n} f(n,k), where f(n,k) is the largest divisor d of k for which gcd(d, n) = 1. (End)
a(n) = Sum_{1<=k<=n, gcd(n,k)=1} phi(k)*floor(n/k). - Ridouane Oudra, May 24 2023