cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279955 Expansion of chi(-x^4)^4 * f(-x^4)^2 * f(-x)^2 in powers of x where chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, -1, 2, -5, 14, 4, -12, 5, -40, 0, 26, 11, 68, -15, -30, -18, -106, 3, 50, -10, 182, 29, -104, 10, -270, 11, 130, 37, 360, -51, -164, -16, -506, -30, 266, -65, 686, 62, -320, 53, -898, 22, 414, 50, 1206, -61, -612, -52, -1560, -4, 696, -81, 1958, 120
Offset: 0

Views

Author

Michael Somos, Dec 23 2016

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x - x^2 + 2*x^3 - 5*x^4 + 14*x^5 + 4*x^6 - 12*x^7 + 5*x^8 + ...
G.f. = q^-1 - 2*q^3 - q^7 + 2*q^11 - 5*q^15 + 14*q^19 + 4*q^23 - 12*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 QPochhammer[ x^4]^2 QPochhammer[ x^4, x^8]^4, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^6 / eta(x^8 + A)^4, n))};

Formula

Expansion of q * eta(q^4)^2 * eta(q^16)^6 / eta(q^32)^4 in powers of q^4.
Euler transform of period 8 sequence [ -2, -2, -2, -8, -2, -2, -2, -4, ...].
a(n) = (-1)^n * A280339(n).
a(3*n + 1) / a(1) == A002171(n) (mod 3). a(3^3*n + 7) / a(7) == A002171(n) (mod 3^2).