cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002171 Glaisher's chi numbers. a(n) = chi(4*n + 1).

Original entry on oeis.org

1, -2, -3, 6, 2, 0, -1, -10, 0, -2, 10, 6, -7, 14, 0, -10, -12, 0, -6, 0, 9, -4, 10, 0, 18, -2, 0, 6, -14, -18, -11, 12, 0, 0, -22, 0, 20, 14, -6, 22, 0, 0, 23, -26, 0, -18, 4, 0, -14, -2, 0, -20, 0, 0, 0, 12, 3, 30, 26, 0, -30, 14, 0, 0, 2, 30, -28, -26, 0, -18, 10, 0, -13, -34, 0, 0, 20, 0, 26, 22, 0, -6, 0, 6, 18, 0
Offset: 0

Views

Author

Keywords

Comments

Number 49 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Glaisher (1884) essentially defines chi(n) as the sum over all solutions of n = x^2 + y^2 with even y and nonnegative odd x of x * (-1)^((x + y - 1)/2) and proves that it is multiplicative. If n is not == 1 (mod 4) then chi(n) = 0. - Michael Somos, Jun 18 2012
Denoted by g_2(q) in Cynk and Hulek on page 8 as the unique weight 2 level 32 newform. - Michael Somos, Aug 24 2012
This is a member of an infinite family of integer weight modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472. - Michael Somos, Aug 24 2012
The weight 2 level N = 32 newform (eta(q^4)*eta(q^8))^2 belongs to the elliptic curves y^2 = x^3 + 4*x , y^2 = x^3 - x, y^2 = x^3 - 11*x - 14 and y^2 = x^3 - 11*x + 14. See the Martin-Ono link, Theorem 2, row N = 32, and the Cremona link, Table 1, N = 32. - Wolfdieter Lang, Dec 26 2016

Examples

			G.f. = 1 - 2*x - 3*x^2 + 6*x^3 + 2*x^4 - x^6 - 10*x^7 - 2*x^9 + 10*x^10 + ...
G.f. (eta(q^4)*eta(q^8))^2 = q - 2*q^5 - 3*q^9 + 6*q^13 + 2*q^17 - q^25 - 10*q^29 - 2*q^37 + 10*q^41 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(32), 2), 341); A[2] - 2*A[6]; /* Michael Somos, Jun 12 2014 */
    
  • Magma
    qEigenform( EllipticCurve( [0, 0, 0, -1, 0]), 341); /* Michael Somos, Jun 12 2014 */
    
  • Magma
    Basis( CuspForms( Gamma0(32), 2), 341)[1]; /* Michael Somos, Mar 25 2015 */
  • Mathematica
    max=100; f[x_] := Product[(1-x^k)*(1-x^(2k)), {k, 1, max}]^2; CoefficientList[ Series[ f[x], {x, 0, max}], x](* Jean-François Alcover, Jan 04 2012, after g.f. *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^2])^2, {x, 0, n}]; (* Michael Somos, Jun 18 2012 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] QPochhammer[ x^2]^3, {x, 0, n}]; (* Michael Somos, Jun 18 2012 *)
  • PARI
    {a(n) = if( n<0, 0, ellak( ellinit( [0, 0, 0, -1, 0], 1), 4*n + 1))}; /* Michael Somos, Jul 27 2006 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^2 + A))^2, n))}; /* Michael Somos, Jul 27 2006 */
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, A = factor( 4*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p%4==3, (-p)^(e/2) * (1 + (-1)^e) / 2, forstep( i=1, sqrtint(p), 2, if( issquare( p - i^2, &y), x=i; break)); a0 = 1; y = a1 = x * (-1)^((x + y)\2) * if(y, 2, 1); for(i=2, e, x = y * a1 - p * a0; a0=a1; a1=x); a1 )))}; /* Michael Somos, Jun 18 2012 */
    

Formula

Expansion of (psi(x) * phi(-x))^2 = phi(-x) * f(-x^2)^3 in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Expansion of q^(-1/4) * eta(q)^2 * eta(q^2)^2 in powers of q.
Euler transform of period 2 sequence [-2, -4, ...].
a(n) = b(4*n + 1) where b(n) is multiplicative with b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)) and b(p) = p - number of solutions of y^2 = x^3 - x (mod p). - Michael Somos, Jul 27 2006. b(p(n)) = A278720(n). - Wolfdieter Lang, Dec 26 2016
G.f.: (Product_{k>0} (1 - x^k) * (1 - x^(2*k)))^2.
G.f.: Sum_{k>=0} a(k) * x^(4*k + 1) = (Sum_{k>=0} (-1)^k * (2*k + 1) * x^(2*k + 1)^2) * (Sum_{k in Z} (-1)^k * x^(4*k)^2).
Coefficients of L-series for elliptic curve "32a2": y^2 = x^3 - x.
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32 (t/i)^2 f(t) where q = exp(2 Pi i t).
G.f.: exp(2*Sum_{k>=1} (sigma(2*k) - 4*sigma(k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018

A280339 Expansion of phi(x)^2 * chi(x^2)^4 * f(-x)^2 in powers of x where phi(), chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, -1, -2, -5, -14, 4, 12, 5, 40, 0, -26, 11, -68, -15, 30, -18, 106, 3, -50, -10, -182, 29, 104, 10, 270, 11, -130, 37, -360, -51, 164, -16, 506, -30, -266, -65, -686, 62, 320, 53, 898, 22, -414, 50, -1206, -61, 612, -52, 1560, -4, -696, -81, -1958, 120
Offset: 0

Views

Author

Michael Somos, Dec 31 2016

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x - x^2 - 2*x^3 - 5*x^4 - 14*x^5 + 4*x^6 + 12*x^7 + 5*x^8 + ...
G.f. = q^-1 + 2*q^3 - q^7 - 2*q^11 - 5*q^15 - 14*q^19 + 4*q^23 + 12*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x]^2 QPochhammer[ x]^2 QPochhammer[ -x^2, x^4]^4, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^4 + A)^4 / (eta(x + A)^2 * eta(x^8 + A)^4), n))};

Formula

Expansion of phi(-x^4)^2 * chi(-x^4)^2 * f(x)^2 in powers of x where phi(), chi(), f() are Ramanujan theta functions.
Expansion of q^(1/4) * eta(q^2)^6 * eta(q^4)^4 / (eta(q)^2 * eta(q^8)^4) in powers of q.
Euler transform of period 8 sequence [2, -4, 2, -8, 2, -4, 2, -4, ...].
a(n) = (-1)^n * A279955(n).
a(3*n + 1) / a(1) == A138515(n) (mod 3). a(3^3*n + 7) / a(7) == A138515(n) (mod 3^2).

A275372 Expansion of f(-x) * f(-x^2)^4 / phi(x^2) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, -7, 6, 20, -13, -34, 15, 53, -25, -91, 52, 135, -65, -180, 82, 253, -133, -343, 160, 449, -207, -603, 306, 780, -348, -979, 438, 1241, -600, -1557, 703, 1924, -890, -2375, 1115, 2910, -1300, -3535, 1620, 4318, -1993, -5198, 2335, 6180, -2783, -7420
Offset: 0

Views

Author

Michael Somos, Dec 25 2016

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x - 7*x^2 + 6*x^3 + 20*x^4 - 13*x^5 - 34*x^6 + 15*x^7 + 53*x^8 + ...
G.f. = q^3 - q^11 - 7*q^19 + 6*q^27 + 20*q^35 - 13*q^43 - 34*q^51 + 15*q^59 + ...
		

Crossrefs

Cf. A279955.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^2]^4 / EllipticTheta[ 3, 0, x^2], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^7 / (QPochhammer[ -x] QPochhammer[ -x^2]^2), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A)^6 * eta(x^8 + A)^2 / eta(x^4 + A)^5, n))};

Formula

Expansion of f(-x^2)^7 / (f(x) * f(x^2)^2) in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-3/8) * eta(q) * eta(q^2)^6 * eta(q^8)^2 / eta(q^4)^5 in powers of q.
Euler transform of period 8 sequence [ -1, -7, -1, -2, -1, -7, -1, -4, ...].
G.f.: Product_{k>0} (1 - x^k)^4 * (1 + x^k)^3 * (1 + x^(4*k))^2 / (1 + x^(2*k))^3.
2 * a(n) = - A279955(2*n + 1).

A279918 Expansion of f(-x^2)^7 / (f(x) * f(-x^8)^2) in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, -5, 4, 5, 0, 11, -15, -18, 3, -10, 29, 10, 11, 37, -51, -16, -30, -65, 62, 53, 22, 50, -61, -52, -4, -81, 120, 62, 0, 124, -182, -85, -43, -157, 171, 123, 60, 202, -198, -174, 0, -190, 301, 117, 54, 278, -375, -171, -153, -399, 370, 300, 108, 408, -451
Offset: 0

Views

Author

Michael Somos, Dec 23 2016

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x - 5*x^2 + 4*x^3 + 5*x^4 + 11*x^6 - 15*x^7 - 18*x^8 + ...
G.f. = q^-1 - q^7 - 5*q^15 + 4*q^23 + 5*q^31 + 11*q^47 - 15*q^55 + ...
		

Crossrefs

Cf. A279955.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^3 QPochhammer[ -x^2, x^4]^2 QPochhammer[ x]^4, {x, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^2]^4 QPochhammer[ -x^2, x^4]^2 QPochhammer[ x, -x], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A)^4 * eta(x^4 + A) / eta(x^8 + A)^2, n))};
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q)*eta(q^2)^4*eta(q^4)/eta(q^8)^2)} \\ Altug Alkan, Mar 21 2018

Formula

Expansion of chi(x)^3 * chi(x^2)^2 * f(-x)^4 in powers of x where chi(), f() are Ramanujan theta functions.
Expansion of phi(-x^2)^4 * chi(x^2)^2 / chi(x) in powers of x where chi(), phi() are Ramanujan theta functions.
Expansion of q^(-1/8) * eta(q) * eta(q^2)^4 * eta(q^4) / eta(q^8)^2 in powers of q.
Euler transform of period 8 sequence [ -1, -5, -1, -6, -1, -5, -1, -4, ...].
a(n) = A279955(2*n).
Showing 1-4 of 4 results.