cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280000 Number of free pure symmetric multifunctions in one symbol with n positions.

Original entry on oeis.org

1, 0, 1, 1, 3, 5, 12, 25, 57, 128, 296, 688, 1618, 3839, 9170, 22065, 53370, 129807, 317080, 777887, 1915247, 4731932, 11726476, 29143123, 72614115, 181363151, 453975928, 1138697689, 2861607677, 7204169689
Offset: 1

Views

Author

Gus Wiseman, Dec 24 2016

Keywords

Comments

A free pure symmetric multifunction (PSM) in one symbol x is either (case 1) the symbol x, or (case 2) an expression of the form h[g_1,...,g_k] where h is a PSM in x, each of the g_i for i=1..(k>0) is a PSM in x, and for i < j we have g_i <= g_j under a canonical total ordering such as the Mathematica ordering. The number of positions in a PSM is the number of brackets [...] plus the number of x's.

Examples

			Sequence of free pure symmetric multifunctions (second column) together with their numbers of positions (first column) and j-numbers (third column, see A279944 for details) begins:
1 x            1
3 x[x]         2
4 x[x,x]       8
5 x[x][x]      3
5 x[x[x]]      4
5 x[x,x,x]     128
6 x[x,x][x]    12
6 x[x][x,x]    27
6 x[x,x[x]]    32
6 x[x,x,x,x]   32768
6 x[x[x,x]]    262144
7 x[x][x][x]   5
7 x[x[x]][x]   6
7 x[x][x[x]]   9
7 x[x[x][x]]   16
7 x[x[x[x]]]   64
7 x[x,x,x][x]  145
7 x[x,x][x,x]  1728
7 x[x,x,x[x]]  2048
7 x[x][x,x,x]  2187
7 x[x,x,x,x,x] 2147483648
7 x[x,x[x,x]]  137438953472
7 x[x[x,x,x]]  1378913...3030144
		

Crossrefs

Cf. A005043 (non-symmetric case), A279944.

Programs

  • Mathematica
    multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
    a[n_]:=If[n===1,1,Sum[a[k]*Sum[Product[multing[a[First[s]],Length[s]],{s,Split[p]}],{p,IntegerPartitions[n-k-1]}],{k,1,n-2}]];
    Array[a,15]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(n=2, n, my(t=EulerT(v)); v=concat(v, sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018