A280000 Number of free pure symmetric multifunctions in one symbol with n positions.
1, 0, 1, 1, 3, 5, 12, 25, 57, 128, 296, 688, 1618, 3839, 9170, 22065, 53370, 129807, 317080, 777887, 1915247, 4731932, 11726476, 29143123, 72614115, 181363151, 453975928, 1138697689, 2861607677, 7204169689
Offset: 1
Keywords
Examples
Sequence of free pure symmetric multifunctions (second column) together with their numbers of positions (first column) and j-numbers (third column, see A279944 for details) begins: 1 x 1 3 x[x] 2 4 x[x,x] 8 5 x[x][x] 3 5 x[x[x]] 4 5 x[x,x,x] 128 6 x[x,x][x] 12 6 x[x][x,x] 27 6 x[x,x[x]] 32 6 x[x,x,x,x] 32768 6 x[x[x,x]] 262144 7 x[x][x][x] 5 7 x[x[x]][x] 6 7 x[x][x[x]] 9 7 x[x[x][x]] 16 7 x[x[x[x]]] 64 7 x[x,x,x][x] 145 7 x[x,x][x,x] 1728 7 x[x,x,x[x]] 2048 7 x[x][x,x,x] 2187 7 x[x,x,x,x,x] 2147483648 7 x[x,x[x,x]] 137438953472 7 x[x[x,x,x]] 1378913...3030144
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times]; a[n_]:=If[n===1,1,Sum[a[k]*Sum[Product[multing[a[First[s]],Length[s]],{s,Split[p]}],{p,IntegerPartitions[n-k-1]}],{k,1,n-2}]]; Array[a,15]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(v=[1]); for(n=2, n, my(t=EulerT(v)); v=concat(v, sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
Comments