cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280014 Numbers m == +- 2 (mod 10) but not m == 2 (mod 6).

Original entry on oeis.org

12, 18, 22, 28, 42, 48, 52, 58, 72, 78, 82, 88, 102, 108, 112, 118, 132, 138, 142, 148, 162, 168, 172, 178, 192, 198, 202, 208, 222, 228, 232, 238, 252, 258, 262, 268, 282, 288, 292, 298, 312, 318, 322, 328, 342, 348, 352, 358, 372, 378, 382, 388, 402, 408, 412, 418, 432, 438, 442, 448, 462, 468, 472, 478, 492, 498, 502, 508, 522
Offset: 1

Views

Author

M. F. Hasler, Feb 21 2017

Keywords

Comments

Also, numbers congruent to 12, 18, 22 or 28 (mod 30). Also, numbers such that A056619(n) = 5.

Crossrefs

Programs

  • Mathematica
    Select[Range@ 524, MemberQ[{12, 18, 22, 28}, Mod[#, 30]] &] (* Michael De Vlieger, Feb 21 2017 *)
    LinearRecurrence[{1,0,0,1,-1},{12,18,22,28,42},80] (* Harvey P. Dale, Nov 09 2017 *)
  • PARI
    a(n)=[12,18,22,28][(n-1)%4+1]+(n-1)\4*30
    
  • PARI
    Vec(2*x*(2 + x)*(3 + x^2 + x^3) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Feb 12 2018

Formula

a(n+4) = a(n)+30.
From Colin Barker, Feb 12 2018: (Start)
G.f.: 2*x*(2 + x)*(3 + x^2 + x^3) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)
a(n) = (5 + 30*n - 3*(-1)^n + 10*A057077(n))/4. - Stefano Spezia, Dec 26 2021