A280014 Numbers m == +- 2 (mod 10) but not m == 2 (mod 6).
12, 18, 22, 28, 42, 48, 52, 58, 72, 78, 82, 88, 102, 108, 112, 118, 132, 138, 142, 148, 162, 168, 172, 178, 192, 198, 202, 208, 222, 228, 232, 238, 252, 258, 262, 268, 282, 288, 292, 298, 312, 318, 322, 328, 342, 348, 352, 358, 372, 378, 382, 388, 402, 408, 412, 418, 432, 438, 442, 448, 462, 468, 472, 478, 492, 498, 502, 508, 522
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Mathematica
Select[Range@ 524, MemberQ[{12, 18, 22, 28}, Mod[#, 30]] &] (* Michael De Vlieger, Feb 21 2017 *) LinearRecurrence[{1,0,0,1,-1},{12,18,22,28,42},80] (* Harvey P. Dale, Nov 09 2017 *)
-
PARI
a(n)=[12,18,22,28][(n-1)%4+1]+(n-1)\4*30
-
PARI
Vec(2*x*(2 + x)*(3 + x^2 + x^3) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Feb 12 2018
Formula
a(n+4) = a(n)+30.
From Colin Barker, Feb 12 2018: (Start)
G.f.: 2*x*(2 + x)*(3 + x^2 + x^3) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)
a(n) = (5 + 30*n - 3*(-1)^n + 10*A057077(n))/4. - Stefano Spezia, Dec 26 2021
Comments