A280021 Expansion of phi_{11, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
0, 1, 2052, 177156, 4202512, 48828150, 363524112, 1977326792, 8606744640, 31382654013, 100195363800, 285311670732, 744500215872, 1792160394206, 4057474577184, 8650199741400, 17626613022976, 34271896307922, 64397206034676, 116490258898580, 205200886312800
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[If[n>0, n^2 * DivisorSigma[9, n], 0], {n, 0, 20}] (* Indranil Ghosh, Mar 12 2017 *)
-
PARI
for(n=0, 20, print1(if(n==0, 0, n^2 * sigma(n, 9)),", ")) \\ Indranil Ghosh, Mar 12 2017
Formula
a(n) = n^2*A013957(n) for n > 0.
Sum_{k=1..n} a(k) ~ zeta(10) * n^12 / 12. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(9*e+9)-1)/(p^9-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-11). (End)
Comments