cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280025 Expansion of phi_{7, 4}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 144, 2268, 18688, 78750, 326592, 825944, 2396160, 4966677, 11340000, 19501812, 42384384, 62777078, 118935936, 178605000, 306774016, 410422194, 715201488, 894002060, 1471680000, 1873240992, 2808260928, 3405105288, 5434490880, 6152734375, 9039899232
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2017

Keywords

Comments

Multiplicative because A001158 is. - Andrew Howroyd, Jul 23 2018

Crossrefs

Cf. A280022 (phi_{5, 4}), this sequence (phi_{7, 4}).
Cf. A280024 (E_2^4*E_4), A282780 (E_2^3*E_6), A282752 (E_2^2*E_4^2), A282102 (E_2*E_4*E_6), A008411 (E_4^3), A280869 (E_6^2).
Cf. A001158 (sigma_3(n)), A281372 (n*sigma_3(n)), A282099 (n^2*sigma_3(n)), A282213 (n^3*sigma_3(n)), this sequence (n^4*sigma_3(n)).
Cf. A152649.

Programs

  • Mathematica
    Table[n^4 * DivisorSigma[3, n], {n, 0, 30}] (* Amiram Eldar, Oct 31 2023 *)
    nmax = 30; CoefficientList[Series[Sum[k^4*x^k*(1 + 120*x^k + 1191*x^(2*k) + 2416*x^(3*k) + 1191*x^(4*k) + 120*x^(5*k) + x^(6*k))/(1 - x^k)^8, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
  • PARI
    a(n) = if(n < 1, 0, n^4 * sigma(n, 3)); \\ Andrew Howroyd, Jul 23 2018

Formula

a(n) = n^4*A001158(n) for n > 0.
a(n) = (7*(A280024(n) - 4*A282780(n) + 6*A282752(n) - 4*A282102(n)) + 3*A008411(n) + 4*A280869(n))/41472.
Sum_{k=1..n} a(k) ~ c * n^8, where c = Pi^4/720 = 0.1352904... (= A152649 / 10). - Amiram Eldar, Dec 08 2022
From Amiram Eldar, Oct 31 2023: (Start)
Multiplicative with a(p^e) = p^(4*e) * (p^(3*e+3)-1)/(p^3-1).
Dirichlet g.f.: zeta(s-4)*zeta(s-7). (End)
G.f.: Sum_{k>=1} k^4*x^k*(1 + 120*x^k + 1191*x^(2*k) + 2416*x^(3*k) + 1191*x^(4*k) + 120*x^(5*k) + x^(6*k))/(1 - x^k)^8. - Vaclav Kotesovec, Aug 02 2025