A280058 Number of 2 X 2 matrices with entries in {0,1,...,n} with determinant = permanent with no entries repeated.
0, 0, 0, 12, 48, 120, 240, 420, 672, 1008, 1440, 1980, 2640, 3432, 4368, 5460, 6720, 8160, 9792, 11628, 13680, 15960, 18480, 21252, 24288, 27600, 31200, 35100, 39312, 43848, 48720, 53940, 59520, 65472, 71808, 78540, 85680, 93240, 101232, 109668, 118560
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Mathematica
Table[2*n*(n-1)*(n-2), {n, 0, 50}] (* G. C. Greubel, Dec 25 2016 *)
-
PARI
for(n=0, 50, print1(2*n*(n-1)*(n-2), ", ")) \\ G. C. Greubel, Dec 25 2016
-
PARI
a(n)=12*binomial(n,3) \\ Charles R Greathouse IV, Dec 25 2016
-
Python
def t(n): s=0 for a in range(0,n+1): for b in range(0,n+1): if a!=b: for c in range(0,n+1): if a!=c and b!=c: for d in range(0,n+1): if d!=a and d!=b and d!=c: if (a*d-b*c)==(a*d+b*c): s+=1 return s for i in range(0,201): print(str(i)+" "+str(t(i)))
-
Python
a = lambda n: 2*n*(n-1)*(n-2) # David Radcliffe, Jun 14 2025
Formula
a(n) = 2*((n+1)^3 - 6*(n+1)^2 + 11*(n+1) - 6), for n>0.
a(n) = 2*n*(n-1)*(n-2). - David Radcliffe, Jun 14 2025
a(n) == 0 (mod 12).
From G. C. Greubel, Dec 25 2016: (Start)
G.f.: (12*x^3)/(1 - x)^4.
E.g.f.: 2*x^3*exp(x).
a(n) = 2*n*(n-1)*(n-2).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
a(n) = 12 * A000292(n-2) for n>1. - Alois P. Heinz, Jan 30 2017
From Amiram Eldar, Jun 30 2025: (Start)
Sum_{n>=3} 1/a(n) = 1/8.
Sum_{n>=3} (-1)^(n+1)/a(n) = log(2) - 5/8. (End)
Comments