cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280058 Number of 2 X 2 matrices with entries in {0,1,...,n} with determinant = permanent with no entries repeated.

Original entry on oeis.org

0, 0, 0, 12, 48, 120, 240, 420, 672, 1008, 1440, 1980, 2640, 3432, 4368, 5460, 6720, 8160, 9792, 11628, 13680, 15960, 18480, 21252, 24288, 27600, 31200, 35100, 39312, 43848, 48720, 53940, 59520, 65472, 71808, 78540, 85680, 93240, 101232, 109668, 118560
Offset: 0

Views

Author

Indranil Ghosh, Dec 25 2016

Keywords

Comments

Consider all Pythagorean triples (X,Y,Z=Y+2) ordered by increasing Z; A005843, A005563, A002522 and A007531 give the X, Y, Z and area A values of related triangles; for n >= 2 altitude h(n) = a(n+1)/A002522(n) or h(n)/2 is irreducible fraction in Q\Z. - Ralf Steiner, Mar 29 2020

Crossrefs

Cf. A000292, A015237 (where the entries can be repeated), A005843, A005563, A002522, A016742, A099761, A007531.

Programs

  • Mathematica
    Table[2*n*(n-1)*(n-2), {n, 0, 50}] (* G. C. Greubel, Dec 25 2016 *)
  • PARI
    for(n=0, 50, print1(2*n*(n-1)*(n-2), ", ")) \\ G. C. Greubel, Dec 25 2016
    
  • PARI
    a(n)=12*binomial(n,3) \\ Charles R Greathouse IV, Dec 25 2016
  • Python
    def t(n):
        s=0
        for a in range(0,n+1):
            for b in range(0,n+1):
                if a!=b:
                    for c in range(0,n+1):
                        if a!=c and b!=c:
                            for d in range(0,n+1):
                                if d!=a and d!=b and d!=c:
                                    if (a*d-b*c)==(a*d+b*c):
                                        s+=1
        return s
    for i in range(0,201):
        print(str(i)+" "+str(t(i)))
    
  • Python
    a = lambda n: 2*n*(n-1)*(n-2) # David Radcliffe, Jun 14 2025
    

Formula

a(n) = 2*((n+1)^3 - 6*(n+1)^2 + 11*(n+1) - 6), for n>0.
a(n) = 2*n*(n-1)*(n-2). - David Radcliffe, Jun 14 2025
a(n) == 0 (mod 12).
From G. C. Greubel, Dec 25 2016: (Start)
G.f.: (12*x^3)/(1 - x)^4.
E.g.f.: 2*x^3*exp(x).
a(n) = 2*n*(n-1)*(n-2).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
a(n) = 12 * A000292(n-2) for n>1. - Alois P. Heinz, Jan 30 2017
a(n+1) = sqrt(A016742(n)*A099761(n-1)) for n>=2. - Ralf Steiner, Mar 29 2020
From Amiram Eldar, Jun 30 2025: (Start)
Sum_{n>=3} 1/a(n) = 1/8.
Sum_{n>=3} (-1)^(n+1)/a(n) = log(2) - 5/8. (End)