A280074 Numbers k such that Sum_{d|k} tau(d) = Sum_{d|k+1} tau(d).
2, 14, 21, 33, 34, 38, 44, 57, 75, 85, 86, 93, 94, 98, 116, 118, 122, 133, 135, 141, 142, 145, 147, 158, 171, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 253, 285, 296, 298, 301, 302, 326, 332, 334, 375, 381, 387, 393, 394, 429, 434, 445, 446, 453, 481
Offset: 1
Keywords
Examples
2 is a term because Sum_{d|2} tau(d) = Sum_{d|3} tau(d) = 1 + 2 = 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Jaroslav Krizek)
Programs
-
Magma
[n: n in [1..10000] | &+[NumberOfDivisors(d): d in Divisors(n)] eq &+[NumberOfDivisors(d): d in Divisors(n+1)]]
-
Mathematica
Select[Range@ 500, Total@ Map[DivisorSigma[0, #] &, Divisors@ #] == Total@ Map[DivisorSigma[0, #] &, Divisors[# + 1]] &] (* Michael De Vlieger, Dec 25 2016 *)
-
PARI
sd(n) = sumdiv(n, d, numdiv(d)); \\ A007425 isok(m) = sd(m) == sd(m+1); \\ Michel Marcus, Apr 28 2020
Comments