cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280074 Numbers k such that Sum_{d|k} tau(d) = Sum_{d|k+1} tau(d).

Original entry on oeis.org

2, 14, 21, 33, 34, 38, 44, 57, 75, 85, 86, 93, 94, 98, 116, 118, 122, 133, 135, 141, 142, 145, 147, 158, 171, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 253, 285, 296, 298, 301, 302, 326, 332, 334, 375, 381, 387, 393, 394, 429, 434, 445, 446, 453, 481
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2016

Keywords

Comments

tau(n) is the number of positive divisors of n (A000005).
Numbers k such that A007425(k) = A007425(k+1).
Subsequence of A052213 and A005237.
Sequence is not the same as A052213, first deviation is at a(212): A052213(212) = 2041, a(212) = 2024. Number 2024 is the smallest number n such that A007425(n) = A007425(n+1) with different prime signatures of numbers n and n+1 (2024 = 2^3 * 11 * 23, 2025 = 3^4 * 5^2; A007425(2024) = A007425(2025) = 90).
Sequence of the smallest numbers k such that Sum_{d|k} tau(d) = Sum_{d|k+1} tau(d) = ... = Sum_{d|k+n-1} tau(d) for n>=1: 1, 2, 33, 19940, 204323, 380480345, 440738966073, ...; conjecture: this sequence is different from A034173.

Examples

			2 is a term because Sum_{d|2} tau(d) = Sum_{d|3} tau(d) = 1 + 2 = 3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] | &+[NumberOfDivisors(d): d in Divisors(n)]  eq &+[NumberOfDivisors(d): d in Divisors(n+1)]]
    
  • Mathematica
    Select[Range@ 500, Total@ Map[DivisorSigma[0, #] &, Divisors@ #] == Total@ Map[DivisorSigma[0, #] &, Divisors[# + 1]] &] (* Michael De Vlieger, Dec 25 2016 *)
  • PARI
    sd(n) = sumdiv(n, d, numdiv(d)); \\ A007425
    isok(m) = sd(m) == sd(m+1); \\ Michel Marcus, Apr 28 2020