cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280130 Expansion of Product_{k>=2} (1 + x^(k^3)).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 26 2016

Keywords

Comments

Number of partitions of n into distinct cubes > 1.

Examples

			a(35) = 1 because 35 = 27 + 8. This is the first nonzero value for a noncube index.
From _Antti Karttunen_, Aug 30 2017: (Start)
a(72) = 1 because there is just one solution: 72 = 4^3 + 2^3.
a(216) = 2 because there are two solutions: 216 = 6^3 = 5^3 + 4^3 + 3^3. This is the first index where a(n) > 1. (End)
		

Crossrefs

Programs

  • Mathematica
    nmax = 130; CoefficientList[Series[Product[1 + x^k^3, {k, 2, nmax}], {x, 0, nmax}], x]
  • PARI
    A280130(n,m=2) = { my(s=0); if(!n,1,for(c=m,n,if(ispower(c,3), s+=A280130(n-c,c+1))); (s)); }; \\ Antti Karttunen, Aug 30 2017
    
  • PARI
    A280130(n,m=2)={if(n, sum(c=m, sqrtnint(n,3), A280130(n-c^3, c+1)), 1)} \\ At n ~ 2500 this is about 100 times faster than code from 2017, but for larger n (needed for A030272(n)=a(n^3)) better use (with parisize (or allocmem) >= 201*Nmax):
    V280130=Vecsmall(prod(k=2, (Nmax=3*10^4)^(1/3), 1+x^k^3+O(x^Nmax))); A280130(n)=V280130[n+1] \\ M. F. Hasler, Jan 05 2020

Formula

G.f.: Product_{k>=2} (1 + x^(k^3)).
From Vaclav Kotesovec, Dec 26 2016: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k) * A279329(k).
a(n) + a(n-1) = A279329(n).
a(n) ~ A279329(n)/2.
(End)

Extensions

Secondary offset added by Antti Karttunen, Jul 07 2025