cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280154 a(n) = 5*Lucas(n).

Original entry on oeis.org

10, 5, 15, 20, 35, 55, 90, 145, 235, 380, 615, 995, 1610, 2605, 4215, 6820, 11035, 17855, 28890, 46745, 75635, 122380, 198015, 320395, 518410, 838805, 1357215, 2196020, 3553235, 5749255, 9302490, 15051745, 24354235, 39405980, 63760215, 103166195, 166926410, 270092605, 437019015
Offset: 0

Views

Author

Bruno Berselli, Dec 27 2016

Keywords

Comments

Fibonacci sequence beginning 10, 5.
After 5, the sequence provides the 3rd column of the rectangular array in A213590.
After 5, all terms belong to A191921 because a(n) = Lucas(n+4) - 3*Lucas(n-1).
From G. C. Greubel, Dec 27 2016: (Start)
{a(n) mod 3} yields (1,2,0,2,2,1,0,1), repeated, and is given as A082115.
{a(n) mod 6} yields (4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1) and is given as A082117. (End)

Crossrefs

Subsequence of A084176.
Cf. A022088: 5*Fibonacci(n).
Cf. A022359: Lucas(n+5) + Lucas(n-5).
Cf. sequences with formula Fibonacci(n+k) + Fibonacci(n-k): A006355 (k=0, without the initial 1), A000032 (k=1), A022086 (k=2), A022112 (k=3, with an initial 4), A022090 (k=4), this sequence (k=5), A022352 (k=6).

Programs

  • Magma
    [5*Lucas(n): n in [0..40]];
    
  • Maple
    F := n -> combinat:-fibonacci(n):
    seq(F(n+5) + F(n-5), n=0..38); # Peter Luschny, Dec 29 2016
  • Mathematica
    Table[5 LucasL[n], {n, 0, 40}]
  • PARI
    vector(40, n, n--; fibonacci(n+5)+fibonacci(n-5))
    
  • Sage
    def A280154():
        x, y = 10, 5
        while True:
            yield x
            x, y = y, x + y
    a = A280154(); print([next(a) for  in range(39)]) # _Peter Luschny, Dec 29 2016

Formula

G.f.: 5*(2 - x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2) for n>1.
a(n) = Fibonacci(n+5) + Fibonacci(n-5), with Fibonacci(-k) = -(-1)^k*Fibonacci(k) for the negative indices.