A280154 a(n) = 5*Lucas(n).
10, 5, 15, 20, 35, 55, 90, 145, 235, 380, 615, 995, 1610, 2605, 4215, 6820, 11035, 17855, 28890, 46745, 75635, 122380, 198015, 320395, 518410, 838805, 1357215, 2196020, 3553235, 5749255, 9302490, 15051745, 24354235, 39405980, 63760215, 103166195, 166926410, 270092605, 437019015
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
Magma
[5*Lucas(n): n in [0..40]];
-
Maple
F := n -> combinat:-fibonacci(n): seq(F(n+5) + F(n-5), n=0..38); # Peter Luschny, Dec 29 2016
-
Mathematica
Table[5 LucasL[n], {n, 0, 40}]
-
PARI
vector(40, n, n--; fibonacci(n+5)+fibonacci(n-5))
-
Sage
def A280154(): x, y = 10, 5 while True: yield x x, y = y, x + y a = A280154(); print([next(a) for in range(39)]) # _Peter Luschny, Dec 29 2016
Formula
G.f.: 5*(2 - x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2) for n>1.
a(n) = Fibonacci(n+5) + Fibonacci(n-5), with Fibonacci(-k) = -(-1)^k*Fibonacci(k) for the negative indices.
Comments