A280543 Expansion of 1/(1 - x - Sum_{k>=2} floor(1/omega(k))*x^k), where omega(k) is the number of distinct prime factors (A001221).
1, 1, 2, 4, 8, 16, 31, 62, 123, 244, 483, 958, 1899, 3765, 7463, 14794, 29329, 58141, 115258, 228486, 452949, 897922, 1780031, 3528716, 6995293, 13867402, 27490602, 54497104, 108034531, 214166610, 424561814, 841647229, 1668473323, 3307565365, 6556885566, 12998306479, 25767716954, 51081672682
Offset: 0
Keywords
Examples
a(3) = 4 because we have [3], [2, 1], [1, 2] and [1, 1, 1].
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Prime Power
- Index entries for sequences related to compositions
Programs
-
Mathematica
nmax = 37; CoefficientList[Series[1/(1 - x - Sum[Floor[1/PrimeNu[k]] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - x - Sum_{k>=2} floor(1/omega(k))*x^k).
Comments