cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A298436 Expansion of Product_{k>=1} 1/(1 - x^prime(k))^2.

Original entry on oeis.org

1, 0, 2, 2, 3, 6, 7, 12, 15, 22, 30, 40, 54, 72, 93, 122, 157, 202, 256, 326, 409, 512, 640, 792, 981, 1204, 1479, 1802, 2196, 2662, 3218, 3880, 4660, 5588, 6677, 7960, 9471, 11232, 13299, 15710, 18514, 21784, 25570, 29968, 35047, 40922, 47698, 55500, 64480, 74786, 86618
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 19 2018

Keywords

Comments

Number of partitions of n into prime parts of 2 kinds.
Self-convolution of A000607.

Examples

			a(5) = 6 because we have [5a], [5b], [3a, 2a], [3a, 2b], [3b, 2a] and [3b, 2b].
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^Prime[k])^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^prime(k))^2.
log(a(n)) ~ 2*Pi*sqrt(2*n/(3*log(n/2))). - Vaclav Kotesovec, Jan 12 2021

A369789 Number of different coefficient values in expansion of Product_{k=1..n} (1+x^prime(k))^2.

Original entry on oeis.org

1, 3, 4, 5, 10, 20, 29, 47, 69, 92, 122, 153, 190, 231, 274, 321, 374, 433, 494, 561, 632, 705, 784, 867, 956, 1053, 1154, 1257, 1364, 1473, 1586, 1713, 1844, 1981, 2120, 2269, 2420, 2577, 2740, 2907, 3080, 3259, 3440, 3631, 3824, 4021, 4220, 4431, 4654, 4881, 5110
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = #Set(Vec(prod(k=1, n, (1+x^prime(k))^2)));
    
  • Python
    from collections import Counter
    from sympy import prime
    def A369789(n):
        c = {0:1}
        for k in range(1,n+1):
            m, d = prime(k), Counter(c)
            for j in c:
                a = c[j]
                d[j+m] += a<<1
                d[j+(m<<1)] += a
            c = d
        return len(set(c.values()))+int(max(c)+1>len(c)) # Chai Wah Wu, Feb 01 2024

A298948 Expansion of Product_{k>=1} (1 - x^prime(k))^2.

Original entry on oeis.org

1, 0, -2, -2, 1, 2, 1, 0, 2, 2, -2, -6, -2, 2, 2, 0, 3, 2, -1, -6, -2, 2, 3, -2, 4, 6, 0, -10, -4, 0, 4, -2, 5, 8, 6, -12, -6, -4, -1, -6, 12, 10, 8, -12, -4, -4, 1, -18, 11, 18, 15, -20, -2, -8, 7, -18, 8, 12, 29, -24, 2, -8, 3, -34, 21, 6, 29, -32, 5, -8, 31, -52
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2018

Keywords

Comments

Self-convolution of A046675.

Crossrefs

Showing 1-3 of 3 results.