cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280257 Numbers k such that tau(k^(k-1)) is a prime.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229
Offset: 1

Views

Author

Jaroslav Krizek, Mar 07 2017

Keywords

Comments

tau(k) is the number of positive divisors of k (A000005).
Numbers k such that A000005(A000169(k)) is a prime.
All primes (A000040) are terms. If p is prime then tau(p^(p-1)) = p.
Sequence of composite terms c: 4, 9, 16, 27, 49, 64, 121, 125, 169, 289, ...; (tau(c^(c-1)): 7, 17, 61, 79, 97, 379, 241, 373, 337, 577, ...).
All terms are powers of primes (A000961). - Robert Israel, Mar 07 2017

Examples

			tau(4^3) = tau(64) = 7 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100] | IsPrime(NumberOfDivisors(n^(n-1)))]
    
  • Maple
    N:= 5000: # to get all terms <= N
    Primes:= select(isprime, {2,seq(i,i=3..N,2)}):
    sort([seq(seq(`if`(isprime(k*(p^k-1)+1),p^k,NULL), k=1..floor(log[p](N))), p=Primes)]); # Robert Israel, Mar 07 2017
  • Mathematica
    Select[Range@ 230, PrimeQ@ DivisorSigma[0, #^(# - 1)] &] (* Michael De Vlieger, Mar 07 2017 *)
  • PARI
    isok(n) = isprime(numdiv(n^(n-1))); \\ Michel Marcus, Mar 07 2017
    
  • PARI
    list(lim)=my(v=List(primes([2,lim\=1]))); for(e=2,logint(lim,2), forprime(p=2,sqrtnint(lim,e), if(ispseudoprime(e*(p^e-1)+1), listput(v,p^e)))); Set(v) \\ Charles R Greathouse IV, Mar 07 2017

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Mar 07 2017