cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A280258 a(n) = Sum_{d|n} pxi(d), where pxi(m) is the product of totatives of m (A001783).

Original entry on oeis.org

1, 2, 3, 5, 25, 9, 721, 110, 2243, 215, 3628801, 397, 479001601, 20027, 896923, 2027135, 20922789888001, 87334, 6402373705728001, 8729939, 47297536723, 1253566127, 1124000727777607680001, 37182647, 41363226782215962649, 608621584727, 1524503639859202243
Offset: 1

Views

Author

Jaroslav Krizek, Jan 01 2017

Keywords

Comments

Conjecture: a(n) is odd for numbers in A183300; a(n) is even for numbers in A001105 (2*n^2).
Numbers n such that a(n) is prime: 2, 3, 4, 9, 12, 20, 27, ... (there are no other terms < 742). Corresponding values of primes: 2, 3, 5, 2243, 397, 8729939, 1524503639859202243, ...

Examples

			For n=6; sets of totatives of divisors of 6: {1}, {1}, {1, 2}, {1, 5}; a(6) = 1+1+(1*2)+(1*5) = 9.
		

Crossrefs

Programs

  • Magma
    [&+[&*[h: h in [1..d] | GCD(h,d) eq 1]: d in Divisors(n)]: n in [1..100]];
    
  • Mathematica
    Table[Sum[Times @@ Select[Range@ d, CoprimeQ[#, d] &], {d, Divisors@ n}], {n, 27}] (* Michael De Vlieger, Jan 01 2017 *)
  • PARI
    a(n) = sumdiv(n, d, prod(k=1, d, if (gcd(k,d)==1, k, 1))); \\ Michel Marcus, Jan 02 2017

Formula

a(n) = Sum_{d|n} A001783(d).

A280260 Partial products of A280258.

Original entry on oeis.org

1, 2, 6, 30, 750, 6750, 4866750, 535342500, 1200773227500, 258166243912500, 936833924075923912500, 371923067858141793262500, 178151744952881559857748513262500, 3567844996171358999271129475108087500, 3200082237501003827703259262202371164762500
Offset: 1

Views

Author

Jaroslav Krizek, Jan 01 2017

Keywords

Comments

A280258(n) = Sum_{d|n} pxi(d), where pxi(m) is the product of totatives of m (A001783).

Crossrefs

Programs

  • Magma
    [&*[&+[&*[h: h in [1..d] | GCD(h,d) eq 1]: d in Divisors(k)]: k in [1..n]]: n in [1..100]]
  • Mathematica
    FoldList[#1 #2 &, #] &@ Table[Sum[Times @@ Select[Range@ d, CoprimeQ[#, d] &], {d, Divisors@ n}], {n, 15}] (* Michael De Vlieger, Jan 01 2017 *)

Formula

a(n) = Product_{i=1..n} A280258(i).
Showing 1-2 of 2 results.