A280258 a(n) = Sum_{d|n} pxi(d), where pxi(m) is the product of totatives of m (A001783).
1, 2, 3, 5, 25, 9, 721, 110, 2243, 215, 3628801, 397, 479001601, 20027, 896923, 2027135, 20922789888001, 87334, 6402373705728001, 8729939, 47297536723, 1253566127, 1124000727777607680001, 37182647, 41363226782215962649, 608621584727, 1524503639859202243
Offset: 1
Keywords
Examples
For n=6; sets of totatives of divisors of 6: {1}, {1}, {1, 2}, {1, 5}; a(6) = 1+1+(1*2)+(1*5) = 9.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[&+[&*[h: h in [1..d] | GCD(h,d) eq 1]: d in Divisors(n)]: n in [1..100]];
-
Mathematica
Table[Sum[Times @@ Select[Range@ d, CoprimeQ[#, d] &], {d, Divisors@ n}], {n, 27}] (* Michael De Vlieger, Jan 01 2017 *)
-
PARI
a(n) = sumdiv(n, d, prod(k=1, d, if (gcd(k,d)==1, k, 1))); \\ Michel Marcus, Jan 02 2017
Formula
a(n) = Sum_{d|n} A001783(d).
Comments