A280294 a(n) = a(n-1) + 2^n * a(n-2) with a(0) = 1 and a(1) = 1.
1, 1, 5, 13, 93, 509, 6461, 71613, 1725629, 38391485, 1805435581, 80431196861, 7475495336637, 666367860021949, 123144883455482557, 21958686920654707389, 8092381769059159562941, 2886261393833112966453949, 2124255587862077437434059453
Offset: 0
Keywords
Examples
1/1 = a(0)/A015459(2). 1/(1+2/1) = 1/3 = a(1)/A015459(3). 1/(1+2/(1+2^2/1)) = 5/7 = a(2)/A015459(4). 1/(1+2/(1+2^2/(1+2^3/1))) = 13/31 = a(3)/A015459(5).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..114
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
Crossrefs
Programs
-
Mathematica
nxt[{n_,a_,b_}]:={n+1,b,b+2^(n+1)*a}; NestList[nxt,{1,1,1},20][[All,2]] (* Harvey P. Dale, Jul 17 2020 *)
-
Python
def a(): a, b, p = 1, 0, 1 while True: p, a, b = p + p, b, b + p * a yield b A280294 = a() print([next(A280294) for in range(19)]) # _Peter Luschny, Dec 05 2017
Comments