A280303 Number of binary necklaces of length n with no subsequence 00000.
1, 2, 3, 5, 7, 12, 17, 31, 51, 91, 155, 287, 505, 930, 1695, 3129, 5759, 10724, 19913, 37239, 69643, 130745, 245715, 463099, 873705, 1651838, 3126707, 5927817, 11251031, 21382558, 40679233, 77475673, 147694719, 281822847, 538213671, 1028714071, 1967728553
Offset: 1
Keywords
Examples
a(5)=7 because we have seven binary cyclic sequences (necklaces) of length 5 that avoid five consecutive zeros: 00001, 00011, 00101, 00111, 01101, 01111, 11111.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
- Petros Hadjicostas, Proof of the formula for the generating function from the formula for a(n)
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- L. Zhang and P. Hadjicostas, On sequences of independent Bernoulli trials avoiding the pattern '11..1', Math. Scientist, 40 (2015), 89-96.
Formula
a(n) = (1/n) * Sum_{d divides n} totient(n/d) * A074048(d).
G.f.: Sum_{k>=1} (phi(k)/k) * log(1/(1-B(x^k))) where B(x) = x*(1+x+x^2+x^3+x^4).
Extensions
a(34) onwards from Andrew Howroyd, Jan 25 2024
Comments