A280340 a(n) = a(n-1) + 10^n * a(n-2) with a(0) = 1 and a(1) = 1.
1, 1, 101, 1101, 1011101, 111111101, 1011212111101, 1112122222111101, 101122323232322111101, 1112223344434333322111101, 1011224344546565545343322111101, 111223345667777878776655443322111101, 1011224455769911213121200887756443322111101
Offset: 0
Keywords
Examples
1/1 = a(0)/A015468(2). 1/(1+10/1) = 1/11 = a(1)/A015468(3). 1/(1+10/(1+10^2/1)) = 101/111 = a(2)/A015468(4). 1/(1+10/(1+10^2/(1+10^3/1))) = 1101/11111 = a(3)/A015468(5).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..62
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
Crossrefs
Programs
-
Maple
A[0]:= 1: A[1]:= 1: for n from 2 to 20 do A[n]:= A[n-1]+10^n*A[n-2] od: seq(A[i],i=0..20); # Robert Israel, Jan 12 2017
-
Mathematica
RecurrenceTable[{a[0]==a[1]==1,a[n]==a[n-1]+10^n a[n-2]},a,{n,15}] (* Harvey P. Dale, Jul 12 2020 *)
Formula
a(n) a(n-3) = 10 a(n-2) a(n-1) - 10 a(n-2)^2 + a(n-1) a(n-3). - Robert Israel, Jan 12 2017
Comments