cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280354 Numbers n such that (i) number of divisors of n equals number of divisors of digit reversal of n, (ii) sum of divisors of n equals sum of divisors of digit reversal of n, and (iii) n is not a palindrome.

Original entry on oeis.org

1561, 1651, 5346, 6435, 157661, 166751, 301134, 321853, 358123, 431103, 507955, 511665, 517055, 537495, 539946, 550715, 559705, 566115, 576908, 594735, 649935, 729287, 765677, 776567, 782927, 809675, 834498, 894438, 896898, 898698, 905289, 982509, 1257912, 1473302
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 01 2017

Keywords

Comments

Intersection of A062895 and A085329.
Numbers n such that A000005(n) = A000005(A004086(n)), A000203(n) = A000203(A004086(n)) and A136522(n) = 0.

Examples

			1561 is in the sequence because 1561 has 4 divisors {1, 7, 223, 1561}, 1 + 7 + 223 + 1561 = 1792 and 1651 has 4 divisors {1, 13, 127, 1651}, 1 + 13 + 127 + 1651 = 1792.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1500000], !PalindromeQ[#1] && DivisorSigma[0, #1] == DivisorSigma[0, FromDigits[Reverse[IntegerDigits[#1]]]] && DivisorSigma[1, #1] == DivisorSigma[1,FromDigits[Reverse[IntegerDigits[#1]]]] & ]
    fQ[n_]:=With[{irn=IntegerReverse[n]},!PalindromeQ[n]&&DivisorSigma[0,n]==DivisorSigma[0,irn] && DivisorSigma[1,n] == DivisorSigma[ 1,irn]]; Select[Range[1480000],fQ] (* Harvey P. Dale, Dec 17 2024 *)
  • PARI
    R(n) = eval(concat(Vecrev(Str(n))));
    isok(n) = n != R(n) && numdiv(n) == numdiv(R(n)) && sigma(n) == sigma(R(n));
    for(n=1561, 1473302, if(isok(n), print1(n, ", "))) \\ Indranil Ghosh, Mar 06 2017