cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280451 G.f.: Product_{k>=1, j>=1} (1+x^(j*k^2)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 9, 13, 16, 20, 27, 34, 42, 53, 67, 82, 102, 125, 153, 188, 227, 274, 332, 401, 478, 574, 686, 815, 969, 1147, 1356, 1600, 1884, 2210, 2597, 3040, 3547, 4141, 4824, 5607, 6508, 7546, 8732, 10100, 11656, 13431, 15473, 17793, 20429, 23436
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(j*k^2)), {k, 1, Floor[Sqrt[nmax]+1]}, {j, 1, Floor[nmax/k^2] + 1}], {x, 0, nmax}], x]
  • PARI
    my(N=66, x='x+O('x^N)); Vec(prod(k=1, sqrt(N), eta(x^(2*k^2))/eta(x^(k^2)))) \\ Seiichi Manyama, Apr 29 2021

Formula

a(n) ~ exp(Pi^2*sqrt(n/2)/3 + sqrt(3) * (sqrt(2)-1) * Zeta(1/2) * Zeta(3/2) * n^(1/4) / (2^(3/4) * sqrt(Pi)) - 9*((sqrt(2)-1) * Zeta(1/2) * Zeta(3/2))^2 / (16*Pi^3)) * sqrt(Pi) / (2^(3/2) * sqrt(3) * n^(3/4)).