cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A004101 Number of partitions of n of the form a_1*b_1^2 + a_2*b_2^2 + ...; number of semisimple rings with p^n elements for any prime p.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 13, 18, 29, 40, 58, 79, 115, 154, 213, 284, 391, 514, 690, 900, 1197, 1549, 2025, 2600, 3377, 4306, 5523, 7000, 8922, 11235, 14196, 17777, 22336, 27825, 34720, 43037, 53446, 65942, 81423, 100033, 122991, 150481, 184149, 224449, 273614, 332291
Offset: 0

Views

Author

Keywords

Comments

The number of semisimple rings with p^n elements does not depend on the prime number p. - Paul Laubie, Mar 05 2024

Examples

			4 = 4*1^2 = 1*2^2 = 3*1^2 + 1*1^2 = 2*1^2 + 2*1^2 = 2*1^2 + 1*1^2 + 1*1^2 = 1*1^2 + 1*1^2 + 1*1^2 + 1*1^2.
		

References

  • J. Knopfmacher, Abstract Analytic Number Theory. North-Holland, Amsterdam, 1975, p. 293.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=0, 1, add(add(d* mul(1+iquo(i[2], 2),
          i=ifactors(d)[2]), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 26 2013
    sqd:=proc(n) local t1,d; t1:=0; for d in divisors(n) do if (n mod d^2) = 0 then t1:=t1+1; fi; od; t1; end; # A046951
    t2:=mul( 1/(1-x^n)^sqd(n),n=1..65); series(t2,x,60); seriestolist(%); # N. J. A. Sloane, Jun 24 2015
  • Mathematica
    max = 45; A046951 = Table[Sum[Floor[n/k^2], {k, n}], {n, 0, max}] // Differences; f = Product[1/(1-x^n)^A046951[[n]], {n, 1, max}]; CoefficientList[Series[f, {x, 0, max}], x] (* Jean-François Alcover, Feb 11 2014 *)
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^(j*k^2)), {k, 1, Floor[Sqrt[nmax]] + 1}, {j, 1, Floor[nmax/k^2] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2017 *)
  • PARI
    N=66; x='x+O('x^N); gf=1/prod(j=1,N, eta(x^(j^2))); Vec(gf) /* Joerg Arndt, May 03 2008 */

Formula

EULER transform of A046951.
a(n) ~ exp(Pi^2 * sqrt(n) / 3 + sqrt(3/(2*Pi)) * Zeta(1/2) * Zeta(3/2) * n^(1/4) - 9 * Zeta(1/2)^2 * Zeta(3/2)^2 / (16*Pi^3)) * Pi^(3/4) / (sqrt(2) * 3^(1/4) * n^(5/8)) [Almkvist, 2006]. - Vaclav Kotesovec, Jan 03 2017

Extensions

More terms, formula and better description from Christian G. Bower, Nov 15 1999
Name clarified by Paul Laubie, Mar 05 2024

A280664 G.f.: Product_{k>=1, j>=1} (1 + x^(j*k^4)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 66, 79, 93, 109, 128, 150, 175, 204, 237, 274, 318, 367, 423, 487, 559, 641, 734, 839, 957, 1091, 1241, 1410, 1601, 1814, 2053, 2322, 2622, 2957, 3334, 3752, 4218, 4740, 5318, 5962, 6679
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 07 2017

Keywords

Comments

In general, if m>=3 and g.f. = Product_{k>=1, j>=1} (1+x^(j*k^m)), then a(n, m) ~ exp(Pi*sqrt(Zeta(m)*n/3) + (2^(1/m)-1) * Pi^(-1/m) * Gamma(1+1/m) * Zeta(1+1/m) * Zeta(1/m) * (3*n/Zeta(m))^(1/(2*m))) * Zeta(m)^(1/4) / (2^(5/4) * 3^(1/4) * n^(3/4)).

Crossrefs

Cf. A107742 (m=1), A280451 (m=2), A280663 (m=3).
Cf. A280662.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1+x^(j*k^4), {k, 1, Floor[nmax^(1/4)]+1}, {j, 1, Floor[nmax/k^4]+1}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi^3 * sqrt(n/30)/3 + 2^(-15/8) * 3^(3/8) * 5^(1/8) * (2^(1/4)-1) * Pi^(-3/4) * Gamma(1/4) * Zeta(5/4) * Zeta(1/4) * n^(1/8)) * Pi / (2^(3/2) * 3^(3/4) * 5^(1/4) * n^(3/4)).

A320235 G.f.: Product_{k>=1, j>=1} (1 + x^(k*j))^2.

Original entry on oeis.org

1, 2, 5, 12, 24, 48, 94, 172, 310, 550, 946, 1602, 2679, 4394, 7123, 11424, 18082, 28344, 44039, 67754, 103412, 156660, 235489, 351602, 521650, 768998, 1127100, 1642946, 2381929, 3436028, 4932998, 7049004, 10028422, 14207122, 20044327, 28169528, 39439899
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 08 2018

Keywords

Comments

Self-convolution of A107742.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(k*j))^2, {k, 1, nmax}, {j, 1, Floor[nmax/k] + 1}], {x, 0, nmax}], x]

Formula

Conjecture: log(a(n)) ~ Pi*sqrt(n*log(n)/3).

A280663 G.f.: Product_{k>=1, j>=1} (1 + x^(j*k^3)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 17, 21, 26, 32, 39, 47, 57, 68, 81, 97, 115, 136, 162, 190, 223, 263, 306, 357, 417, 483, 561, 650, 750, 866, 997, 1145, 1315, 1507, 1725, 1971, 2250, 2564, 2917, 3318, 3766, 4270, 4840, 5475, 6188, 6990, 7881, 8881
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 07 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1+x^(j*k^3), {k, 1, Floor[nmax^(1/3)]+1}, {j, 1, Floor[nmax/k^3]+1}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(Zeta(3)*n/3) + (2^(1/3)-1) * Pi^(-1/3) * Gamma(4/3) * Zeta(4/3) * Zeta(1/3) * (3*n/Zeta(3))^(1/6)) * Zeta(3)^(1/4) / (2^(5/4) * 3^(1/4) * n^(3/4)).

A327745 Expansion of Product_{i>=1, j>=1} (1 + x^(i*j*(j + 1)/2)).

Original entry on oeis.org

1, 1, 1, 3, 3, 4, 8, 9, 11, 19, 23, 28, 42, 51, 62, 89, 108, 130, 178, 215, 260, 344, 413, 496, 639, 766, 916, 1155, 1380, 1641, 2040, 2426, 2870, 3520, 4166, 4912, 5960, 7023, 8246, 9911, 11634, 13610, 16224, 18972, 22111, 26183, 30507, 35430, 41698
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Comments

Weigh transform of A007862.

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[Product[(1 + x^k)^Length[Select[Divisors[k], IntegerQ[Sqrt[8 # + 1]] &]], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d Length[Select[Divisors[d], IntegerQ[Sqrt[8 # + 1]] &]], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 48}]
    nmax = 50; CoefficientList[Series[Product[QPochhammer[-1, x^(k*(k + 1)/2)]/2, {k, 1, Sqrt[2*nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 24 2019 *)

Formula

G.f.: Product_{k>=1} (1 + x^k)^A007862(k).

A280452 G.f.: Product_{k>=1, j>=1} (1 + x^(j^2*k^2)).

Original entry on oeis.org

1, 1, 0, 0, 2, 2, 0, 0, 1, 3, 2, 0, 0, 4, 4, 0, 3, 5, 3, 1, 6, 6, 2, 2, 3, 11, 9, 1, 0, 16, 16, 0, 3, 11, 15, 7, 10, 10, 14, 14, 11, 23, 19, 9, 6, 36, 32, 4, 5, 31, 46, 18, 16, 26, 48, 36, 25, 35, 38, 36, 20, 60, 60, 28, 20, 82, 98, 30, 31, 65, 104, 64, 40
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(j^2*k^2)), {k, 1, Floor[Sqrt[nmax]]+1}, {j, 1, Floor[Sqrt[nmax/k^2]] + 1}], {x, 0, nmax}], x]

A327738 Expansion of 1 / (1 - Sum_{i>=1, j>=1} x^(i*j^2)).

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 37, 76, 158, 326, 672, 1386, 2862, 5906, 12187, 25148, 51900, 107103, 221023, 456110, 941256, 1942423, 4008481, 8272094, 17070712, 35227975, 72698206, 150023632, 309596255, 638898274, 1318462339, 2720844607, 5614870612, 11587126980
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Comments

Invert transform of A046951.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 1, add(a(n-i)*
          nops(select(issqr, numtheory[divisors](i))), i=1..n))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 23 2019
  • Mathematica
    nmax = 33; CoefficientList[Series[1/(1 - Sum[x^(k^2)/(1 - x^(k^2)), {k, 1, Floor[Sqrt[nmax]] + 1}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Length[Select[Divisors[k], IntegerQ[Sqrt[#]] &]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]

Formula

G.f.: 1 / (1 - Sum_{k>=1} x^(k^2) / (1 - x^(k^2))).
G.f.: 1 / (1 - Sum_{k>=1} (theta_3(x^k) - 1) / 2), where theta_() is the Jacobi theta function.
a(0) = 1; a(n) = Sum_{k=1..n} A046951(k) * a(n-k).

A343776 G.f.: Product_{k>=1} eta(x^(k^2)).

Original entry on oeis.org

1, -1, -1, 0, -1, 2, 1, 1, -1, -1, 2, 0, -1, 0, -2, -3, -1, 2, 0, 1, 5, -2, 1, -2, 2, -1, 0, 2, 0, -1, -1, 3, -4, 4, 0, -4, -5, -2, -3, 7, 2, 1, -6, -2, 4, -2, 2, 1, 7, -5, 11, 6, 0, -1, 1, -12, -11, 5, -3, -2, -8, 9, 8, 3, 1, 2, -5, -4, 5, -11, -6, 0, 7, 7, 4, -17, 3, -5, 8, 9, -4, -1, -10, 5, -6, 24, -5, 10, 0
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2021

Keywords

Crossrefs

Convolution inverse of A004101.

Programs

  • PARI
    my(N=99, x='x+O('x^N)); Vec(prod(k=1, sqrt(N), eta(x^(k^2))))

A327747 Expansion of Product_{i>=1, j>=1} 1 / (1 + (-x)^(i*j^2)).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 2, 2, 1, 1, 0, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 3, 4, 3, 4, 4, 1, 4, 3, 4, 7, 6, 7, 6, 4, 5, 5, 7, 9, 9, 9, 8, 7, 7, 7, 10, 14, 13, 12, 14, 10, 12, 16, 13, 20, 19, 20, 20, 16, 18, 20, 22, 26, 27, 27, 28, 23, 26, 25, 31, 38, 36, 40
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[1/(1 + (-x)^k)^Length[Select[Divisors[k], IntegerQ[Sqrt[#]] &]], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[(-1)^k Sum[(-1)^(k/d) d Length[Select[Divisors[d], IntegerQ[Sqrt[#]] &]], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 75}]

Formula

G.f.: Product_{k>=1} 1 / (1 + (-x)^k)^A046951(k).
Showing 1-9 of 9 results.