A280470 Triangle A106534 with reversed rows.
1, 1, 2, 2, 3, 5, 5, 7, 10, 15, 14, 19, 26, 36, 51, 42, 56, 75, 101, 137, 188, 132, 174, 230, 305, 406, 543, 731, 429, 561, 735, 965, 1270, 1676, 2219, 2950, 1430, 1859, 2420, 3155, 4120, 5390, 7066, 9285, 12235, 4862, 6292, 8151, 10571, 13726, 17846, 23236, 30302, 39587, 51822, 16796, 21658, 27950, 36101, 46672
Offset: 0
Examples
Fibonacci Determinant Triangle: 1; 1, 2; 2, 3, 5; 5, 7, 10, 15; 14, 19, 26, 36, 51; 42, 56, 75, 101, 137, 188; 132, 174, 230, 305, 406, 543, 731; 429, 561, 735, 965, 1270, 1676, 2219, 2950; ...
Links
- P. Barry, A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010) # 10.8.2, page 5
- A. Cvetkovi, Predrag Rajkovic, and Milos IvkoviCatalan Numbers, the Hankel Transform, and Fibonacci Numbers, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.3.
Programs
-
Magma
&cat [[&+[Binomial(k,j)*Catalan(n-j): j in [0..k]]: k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 07 2017
-
Mathematica
Table[Sum[Binomial[k, j] CatalanNumber[n - j], {j, 0, k}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Mar 08 2017 *)
-
PARI
C(n)=binomial(2*n,n)/(n+1); T(n,k)=sum(j=0,k,binomial(k,j)*C(n-j)); for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()); \\ Joerg Arndt, Jan 15 2017
Formula
T(n,k) = Sum_{j=0..k} binomial(k,j) * A000108(n-j). - Joerg Arndt, Jan 15 2017