cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280470 Triangle A106534 with reversed rows.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 5, 7, 10, 15, 14, 19, 26, 36, 51, 42, 56, 75, 101, 137, 188, 132, 174, 230, 305, 406, 543, 731, 429, 561, 735, 965, 1270, 1676, 2219, 2950, 1430, 1859, 2420, 3155, 4120, 5390, 7066, 9285, 12235, 4862, 6292, 8151, 10571, 13726, 17846, 23236, 30302, 39587, 51822, 16796, 21658, 27950, 36101, 46672
Offset: 0

Views

Author

Tony Foster III, Jan 03 2017

Keywords

Examples

			Fibonacci Determinant Triangle:
    1;
    1,    2;
    2,    3,    5;
    5,    7,   10,   15;
   14,   19,   26,   36,   51;
   42,   56,   75,  101,  137,  188;
  132,  174,  230,  305,  406,  543,  731;
  429,  561,  735,  965, 1270, 1676, 2219, 2950;
  ...
		

Crossrefs

Programs

  • Magma
    &cat [[&+[Binomial(k,j)*Catalan(n-j): j in [0..k]]: k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 07 2017
  • Mathematica
    Table[Sum[Binomial[k, j] CatalanNumber[n - j], {j, 0, k}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Mar 08 2017 *)
  • PARI
    C(n)=binomial(2*n,n)/(n+1);
    T(n,k)=sum(j=0,k,binomial(k,j)*C(n-j));
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()); \\ Joerg Arndt, Jan 15 2017
    

Formula

T(n,k) = Sum_{j=0..k} binomial(k,j) * A000108(n-j). - Joerg Arndt, Jan 15 2017