cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A280540 G.f.: Product_{i>=1, j>=1} 1/(1 - x^(i*j))^(i*j).

Original entry on oeis.org

1, 1, 5, 11, 33, 67, 180, 366, 871, 1782, 3927, 7885, 16637, 32763, 66469, 128938, 253871, 484034, 930959, 1747304, 3292730, 6092664, 11282364, 20596790, 37568653, 67736175, 121886533, 217261372, 386216073, 681119439, 1197524035, 2091091902, 3639519280
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 05 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^(i*j))^(i*j), {i, 1, nmax}, {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; s = 1 - x; Do[s *= Sum[Binomial[k*DivisorSigma[0, k], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*d(k)), where d(k) = number of divisors of k (A000005). - Ilya Gutkovskiy, Aug 26 2018
log(a(n)) ~ (3/2)^(2/3) * Zeta(3)^(1/3) * log(n)^(1/3) * n^(2/3). - Vaclav Kotesovec, Aug 28 2018

A318414 Expansion of Product_{i>=1, j>=1, k>=1} (1 + x^(i*j*k))^(i*j*k).

Original entry on oeis.org

1, 1, 6, 15, 48, 108, 323, 716, 1868, 4217, 10137, 22311, 51477, 110817, 245260, 519918, 1114914, 2318557, 4854952, 9923533, 20335761, 40941170, 82365742, 163413699, 323589060, 633429923, 1236392498, 2390718266, 4606489839, 8805346615, 16768968317, 31713677061, 59747953446
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 26 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(mul(mul((1+x^(i*j*k))^(i*j*k),k=1..55),j=1..55),i=1..55),x=0,33): seq(coeff(a,x,n),n=0..32); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 32; CoefficientList[Series[Product[Product[Product[(1 + x^(i j k))^(i j k), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[Product[(1 + x^k)^(k Sum[DivisorSigma[0, d], {d, Divisors[k]}]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k/d + 1) d^2 Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}]  x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]
    nmax = 32; A034718 = Table[n*Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, nmax}]; s = 1 + x; Do[s *= Sum[Binomial[A034718[[k]], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Aug 31 2018 *)

Formula

G.f.: Product_{k>=1} (1 + x^k)^(k*tau_3(k)), where tau_3() = A007425.
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^2 * Sum_{j|d} tau(j) ) * x^k/k), where tau() = A000005.
Conjecture: log(a(n)) ~ 3^(2/3) * Zeta(3)^(1/3) * log(n)^(2/3) * n^(2/3) / 2^(5/3). - Vaclav Kotesovec, Sep 02 2018

A318416 Expansion of Product_{i>=1, j>=1} (1 + i*j*x^(i*j)).

Original entry on oeis.org

1, 1, 4, 10, 22, 50, 115, 231, 470, 995, 1912, 3745, 7222, 13608, 25345, 47322, 85654, 155163, 278867, 494080, 870618, 1524769, 2640527, 4549564, 7802037, 13251684, 22412317, 37706268, 63015263, 104800015, 173574936, 285694401, 468449681, 764775169, 1242535747, 2010866469, 3242127656
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 26 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(mul(1+i*j*x^(i*j),j=1..55),i=1..55),x=0,37): seq(coeff(a,x,n),n=0..36); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 36; CoefficientList[Series[Product[Product[(1 + i j x^(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 36; CoefficientList[Series[Product[(1 + k x^k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 36; CoefficientList[Series[Exp[Sum[Sum[(-d)^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-d)^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 36}]
    nmax = 36; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[0, k], j]*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

G.f.: Product_{k>=1} (1 + k*x^k)^tau(k), where tau = number of divisors (A000005).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-d)^(k/d+1)*tau(d) ) * x^k/k).

A318696 Expansion of e.g.f. Product_{i>=1, j>=1} (1 + x^(i*j))^(1/(i*j)).

Original entry on oeis.org

1, 1, 2, 10, 34, 218, 1708, 12556, 97340, 1139932, 12602584, 142757624, 1983086488, 26745019000, 402951386576, 7181178238672, 115410887636752, 2039658743085584, 42354537803172640, 815690033731561888, 17593347085888752416, 416765224159172991136, 9379433694333768563392
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(mul((1+x^k)^(tau(k)/k),k=1..100),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[Product[(1 + x^(i j))^(1/(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[0, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]
    nmax = 22; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[0, k]/k, j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 01 2018 *)

Formula

E.g.f.: Product_{k>=1} (1 + x^k)^(tau(k)/k), where tau = number of divisors (A000005).
E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*tau(d) ) * x^k/k).

A327063 Expansion of Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))^j).

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 8, 11, 15, 24, 34, 43, 63, 87, 115, 159, 217, 279, 380, 505, 657, 868, 1139, 1458, 1913, 2482, 3162, 4069, 5232, 6628, 8469, 10755, 13544, 17127, 21634, 27061, 33988, 42557, 52985, 66069, 82289, 101862, 126281, 156275, 192655, 237530, 292502
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[Product[(1+x^(k*j))^j, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327064 Expansion of Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))^k).

Original entry on oeis.org

1, 1, 2, 5, 10, 18, 35, 62, 110, 197, 339, 573, 975, 1621, 2674, 4385, 7108, 11422, 18277, 28976, 45648, 71531, 111372, 172416, 265695, 407210, 621143, 943392, 1426414, 2147672, 3221271, 4812534, 7163440, 10625651, 15706871, 23141148, 33987287, 49762235
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[(1+x^(k*j))^k, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327065 Expansion of Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))^(k*j)).

Original entry on oeis.org

1, 1, 2, 5, 12, 20, 42, 75, 141, 259, 466, 799, 1427, 2443, 4169, 7049, 11863, 19605, 32518, 53184, 86579, 140018, 225380, 359739, 572864, 905903, 1426270, 2234952, 3488313, 5416403, 8383226, 12917257, 19831763, 30334937, 46245977, 70242043, 106371686
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[(1+x^(k*j))^(k*j), {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A318579 Expansion of Product_{i>=1, j>=1} ((1 + x^(i*j))/(1 - x^(i*j)))^(i*j).

Original entry on oeis.org

1, 2, 10, 30, 98, 270, 786, 2046, 5418, 13556, 33726, 81002, 192902, 447562, 1027990, 2316750, 5165398, 11345298, 24668952, 52972902, 112688802, 237193354, 494933514, 1023238806, 2098662698, 4269141516, 8620916966, 17280687472, 34405835066, 68044209950, 133732805458
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 29 2018

Keywords

Comments

Convolution of A280540 and A280541.

Crossrefs

Programs

  • Maple
    a:=series(mul(mul(((1+x^(i*j))/(1-x^(i*j)))^(i*j),j=1..100),i=1..100),x=0,31): seq(coeff(a,x,n),n=0..30); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[Product[((1 + x^(i j))/(1 - x^(i j)))^(i j), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(k DivisorSigma[0, k]), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(1 - (-1)^(k/d)) d^2 DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 30}]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k*tau(k)), where tau(k) = number of divisors of k (A000005).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (1 - (-1)^(k/d))*d^2*tau(d) ) * x^k/k).
log(a(n)) ~ 3^(2/3) * (7*Zeta(3))^(1/3) * log(n)^(1/3) * n^(2/3) / 2^(4/3). - Vaclav Kotesovec, Sep 03 2018

A318482 Expansion of Product_{i>=1, j>=1, k>=1} (1 + i*j*k*x^(i*j*k)).

Original entry on oeis.org

1, 1, 6, 15, 45, 105, 302, 668, 1664, 3830, 8793, 19350, 43265, 92552, 198418, 418128, 869999, 1787964, 3651028, 7353349, 14697367, 29139447, 57225893, 111572329, 216001937, 415000057, 792008753, 1502559866, 2831393559, 5305614223, 9885825732, 18318165218
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[Product[(1+i*j*k*x^(i*j*k)), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]

A318493 Expansion of 1/(1 - Sum_{i>=1, j>=1} i*j*x^(i*j)).

Original entry on oeis.org

1, 1, 5, 15, 53, 165, 561, 1807, 5993, 19586, 64491, 211466, 695101, 2281614, 7494995, 24610588, 80829373, 265437828, 871738976, 2862815763, 9401768055, 30875971366, 101399191222, 333001988025, 1093603789613, 3591473940515, 11794667169894, 38734550365835, 127207121681103, 417757532953031
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 27 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(1/(1-add(add(i*j*x^(i*j),j=1..100),i=1..100)),x=0,30): seq(coeff(a,x,n),n=0..29); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 29; CoefficientList[Series[1/(1 - Sum[Sum[i j x^(i j), {i, 1, nmax}], {j, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[1/(1 - Sum[k x^k/(1 - x^k)^2, {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[1/(1 - Sum[k DivisorSigma[0, k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[k DivisorSigma[0, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 29}]

Formula

G.f.: 1/(1 - Sum_{k>=1} k*x^k/(1 - x^k)^2).
G.f.: 1/(1 - Sum_{k>=1} k*d(k)*x^k), where d(k) = number of divisors of k (A000005).
a(0) = 1; a(n) = Sum_{k=1..n} A038040(k)*a(n-k).
a(n) ~ c / r^n, where r = 0.304499876501217750838861744045680232405337905509126... is the root of the equation Sum_{k>=1} k*r^k/(1 - r^k)^2 = 1 and c = 0.44152042515136849968144466258954953693306684400261343177792428746297872748... - Vaclav Kotesovec, Aug 28 2018
Showing 1-10 of 10 results.