A280540 G.f.: Product_{i>=1, j>=1} 1/(1 - x^(i*j))^(i*j).
1, 1, 5, 11, 33, 67, 180, 366, 871, 1782, 3927, 7885, 16637, 32763, 66469, 128938, 253871, 484034, 930959, 1747304, 3292730, 6092664, 11282364, 20596790, 37568653, 67736175, 121886533, 217261372, 386216073, 681119439, 1197524035, 2091091902, 3639519280
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, A unified treatment of families of partition functions, La Matematica (2024). Preprint available as arXiv:2303.02240 [math.CO], 2023.
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[1/(1-x^(i*j))^(i*j), {i, 1, nmax}, {j, 1, nmax}], {x, 0, nmax}], x] nmax = 50; s = 1 - x; Do[s *= Sum[Binomial[k*DivisorSigma[0, k], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2018 *)
Formula
G.f.: Product_{k>=1} 1/(1 - x^k)^(k*d(k)), where d(k) = number of divisors of k (A000005). - Ilya Gutkovskiy, Aug 26 2018
log(a(n)) ~ (3/2)^(2/3) * Zeta(3)^(1/3) * log(n)^(1/3) * n^(2/3). - Vaclav Kotesovec, Aug 28 2018
Comments