cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A318415 Expansion of Product_{i>=1, j>=1} 1/(1 - i*j*x^(i*j)).

Original entry on oeis.org

1, 1, 5, 11, 35, 69, 200, 398, 1014, 2069, 4820, 9716, 21787, 43209, 92530, 182773, 378676, 737526, 1492451, 2872788, 5686194, 10837935, 21052463, 39699970, 75972300, 141818166, 267607065, 495142606, 922920753, 1692529453, 3121105278, 5676677651, 10364752129, 18708292447, 33851433117, 60656841965
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[Product[Product[1/(1 - i j x^(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 35; CoefficientList[Series[Product[1/(1 - k x^k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 35; CoefficientList[Series[Exp[Sum[Sum[d^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 35}]
    nmax = 40; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[0, k], j]*(-1)^j*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

G.f.: Product_{k>=1} 1/(1 - k*x^k)^tau(k), where tau = number of divisors (A000005).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d^(k/d+1)*tau(d) ) * x^k/k).
From Vaclav Kotesovec, Aug 27 2018: (Start)
a(n) ~ c * n * 3^(n/3), where
c = 10751825728554.298582954430359167227238488440778317... if mod(n,3)=0
c = 10751825728553.835664124121831524829543267756895348... if mod(n,3)=1
c = 10751825728553.838520991588115910603754564083195806... if mod(n,3)=2
In closed form, c = (Product_{k>=4}((1 - k/3^(k/3))^(-sigma(0,k)))) / (21 - 16*3^(1/3) + 3^(2/3)) - (3*Product_{k>=4}((1 + ((-1)^(1 + 2*k/3)*k)/3^(k/3))^(-sigma(0,k)))) / ((-1)^(2*n/3)*((3 + 2*(-3)^(1/3))^2*(-3 + (-3)^(2/3)))) + Product_{k>=4}((1 + ((-1)^(1 + 4*k/3)*k)/3^(k/3))^(-sigma(0,k))) / (9*(-1)^(4*n/3)*((1 + (-1/3)^(1/3))*(1 - 2*(-1/3)^(2/3))^2))
(End)

A318694 Expansion of e.g.f. Product_{i>=1, j>=1} (1 + x^(i*j)/(i*j)).

Original entry on oeis.org

1, 1, 2, 10, 40, 248, 1868, 14516, 131920, 1409040, 15697872, 191687472, 2663239104, 37878672960, 582357866400, 9898540886880, 172534018584960, 3192686545714560, 63844374067107840, 1309775114921541120, 28512040933544970240, 656888836504576112640, 15495311684125737031680
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(mul((1+x^k/k)^tau(k),k=1..100),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[Product[(1 + x^(i j)/(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Product[(1 + x^k/k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[(-d)^(1 - k/d) DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-d)^(1 - k/d) DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]

Formula

E.g.f.: Product_{k>=1} (1 + x^k/k)^tau(k), where tau = number of divisors (A000005).
E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-d)^(1-k/d)*tau(d) ) * x^k/k).

A318484 Expansion of Product_{k>=1} (1 + k*x^k)^sigma(k), where sigma = A000203.

Original entry on oeis.org

1, 1, 6, 18, 52, 142, 404, 1018, 2624, 6645, 16124, 38857, 92245, 214841, 494098, 1125062, 2522188, 5604930, 12327860, 26838595, 57913194, 123951482, 263019720, 553989989, 1158449522, 2405179547, 4961047246, 10168544537, 20714279168, 41952595411, 84494479578
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+k*x^k)^DivisorSigma[1, k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[1, k], j]*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[s, x]

A333653 Expansion of Product_{i>=1, j>=1} (1 + i*x^(i*j)).

Original entry on oeis.org

1, 1, 3, 7, 13, 27, 54, 98, 174, 335, 572, 1004, 1733, 2933, 4916, 8307, 13470, 22042, 35851, 57256, 91462, 145231, 227667, 355522, 554058, 853986, 1313121, 2010318, 3057827, 4627213, 6989808, 10481205, 15679549, 23365207, 34658909, 51241077, 75541695, 110852295, 162238415
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    m = 38; CoefficientList[Series[Product[1 + i*x^(i*j), {i, 1, m}, {j, 1, m}], {x, 0, m}], x] (* Amiram Eldar, Aug 23 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(prod(i=1, N, prod(j=1, N\i, 1+i*x^(i*j))))
    
  • PARI
    N=40; x='x+O('x^N); Vec(prod(k=1, N, prod(d=1, k, 1+(k%d==0)*d*x^k)))

Formula

G.f.: Product_{k>0} f(q^k) where f(q) = Product_{i>=1} (1 + i*q^i).
G.f.: Product_{k>0} Product_{d|k} (1 + d*x^k).

A318482 Expansion of Product_{i>=1, j>=1, k>=1} (1 + i*j*k*x^(i*j*k)).

Original entry on oeis.org

1, 1, 6, 15, 45, 105, 302, 668, 1664, 3830, 8793, 19350, 43265, 92552, 198418, 418128, 869999, 1787964, 3651028, 7353349, 14697367, 29139447, 57225893, 111572329, 216001937, 415000057, 792008753, 1502559866, 2831393559, 5305614223, 9885825732, 18318165218
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[Product[(1+i*j*k*x^(i*j*k)), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]
Showing 1-5 of 5 results.