cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A318416 Expansion of Product_{i>=1, j>=1} (1 + i*j*x^(i*j)).

Original entry on oeis.org

1, 1, 4, 10, 22, 50, 115, 231, 470, 995, 1912, 3745, 7222, 13608, 25345, 47322, 85654, 155163, 278867, 494080, 870618, 1524769, 2640527, 4549564, 7802037, 13251684, 22412317, 37706268, 63015263, 104800015, 173574936, 285694401, 468449681, 764775169, 1242535747, 2010866469, 3242127656
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 26 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(mul(1+i*j*x^(i*j),j=1..55),i=1..55),x=0,37): seq(coeff(a,x,n),n=0..36); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 36; CoefficientList[Series[Product[Product[(1 + i j x^(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 36; CoefficientList[Series[Product[(1 + k x^k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 36; CoefficientList[Series[Exp[Sum[Sum[(-d)^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-d)^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 36}]
    nmax = 36; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[0, k], j]*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

G.f.: Product_{k>=1} (1 + k*x^k)^tau(k), where tau = number of divisors (A000005).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-d)^(k/d+1)*tau(d) ) * x^k/k).

A318481 Expansion of Product_{i>=1, j>=1, k>=1} 1/(1 - i*j*k*x^(i*j*k)).

Original entry on oeis.org

1, 1, 7, 16, 64, 133, 465, 1008, 3023, 6695, 18206, 40175, 103229, 225470, 549873, 1194620, 2801742, 6015042, 13686306, 29063919, 64424496, 135362432, 293512852, 610061141, 1298516539, 2670738781, 5591712472, 11388116508, 23499720744, 47403692965, 96564236754
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[Product[1/(1-i*j*k*x^(i*j*k)), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]

A318483 Expansion of Product_{k>=1} 1/(1 - k*x^k)^sigma(k), where sigma = A000203.

Original entry on oeis.org

1, 1, 7, 19, 71, 173, 583, 1443, 4255, 10648, 28929, 71159, 184740, 445626, 1110122, 2638328, 6369490, 14870194, 35031627, 80465028, 185556696, 419916149, 950785580, 2121471778, 4727971847, 10412230698, 22876886529, 49776871862, 107974178843, 232302695301
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^DivisorSigma[1, k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[1, k], j]*(-1)^j*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x]

Formula

a(n) ~ c * n^3 * 3^(n/3), where
c = 280631952508395331283883354935233682635.581151020... if mod(n,3)=0
c = 280631952508395331283883354935233682635.059082354... if mod(n,3)=1
c = 280631952508395331283883354935233682635.088610121... if mod(n,3)=2
In closed form, c = (Product_{k>=4}((1 - k/3^(k/3))^(-sigma(k)))/(18*(57 - 90*3^(1/3) + 35*3^(2/3)))) - Product_{k>=4}((1 + ((-1)^(1 + 2*k/3)*k)/3^(k/3))^(-sigma(k)))/ ((-1)^(2*n/3)*(6*(3 + 2*(-3)^(1/3))^3*(-3 + (-3)^(2/3)))) - ((-1)^(1 - (4*n)/3)*Product_{k>=4}((1 + ((-1)^(1 + 4*k/3)*k)/3^(k/3))^(-sigma(k))))/(486*(1 + (-1/3)^(1/3))* (1 - 2*(-1/3)^(2/3))^3)

A318693 Expansion of e.g.f. Product_{i>=1, j>=1} 1/(1 - x^(i*j)/(i*j)).

Original entry on oeis.org

1, 1, 4, 16, 100, 628, 5388, 46212, 491328, 5381760, 68023056, 892073136, 13238778144, 201822014496, 3397195558560, 59356290115296, 1121097742183296, 21916440531679104, 459855848691876096, 9952944631606759680, 229191463614349301760, 5446997871156332605440, 136439919208493792455680
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(mul(mul(1/(1-x^(i*j)/(i*j)),i=1..30),j=1..30),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[Product[1/(1 - x^(i j)/(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Product[1/(1 - x^k/k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[d^(1 - k/d) DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^(1 - k/d) DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]

Formula

E.g.f.: Product_{k>=1} 1/(1 - x^k/k)^tau(k), where tau = number of divisors (A000005).
E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} d^(1-k/d)*tau(d) ) * x^k/k).

A332199 Expansion of Product_{i>=1, j>=1} 1/(1 - i*x^(i*j)).

Original entry on oeis.org

1, 1, 4, 8, 22, 40, 101, 183, 412, 765, 1586, 2899, 5834, 10484, 20199, 36246, 67758, 119837, 219661, 384200, 690164, 1197423, 2114105, 3632088, 6332797, 10779478, 18555115, 31354932, 53385037, 89494901, 150983344, 251284829, 420218575, 694947117, 1152915743, 1894656801
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    m = 35; CoefficientList[Series[Product[1/(1 - i*x^(i*j)), {i, 1, m}, {j, 1, m}], {x, 0, m}], x] (* Amiram Eldar, Aug 23 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(1/prod(i=1, N, prod(j=1, N\i, 1-i*x^(i*j))))
    
  • PARI
    N=40; x='x+O('x^N); Vec(1/prod(k=1, N, prod(d=1, k, 1-(k%d==0)*d*x^k)))

Formula

G.f.: Product_{k>0} f(q^k) where f(q) = Product_{i>=1} 1/(1 - i*q^i).
G.f.: Product_{k>0} Product_{d|k} 1/(1 - d*x^k).
Showing 1-5 of 5 results.