A280609 Odd prime powers with prime exponents.
9, 25, 27, 49, 121, 125, 169, 243, 289, 343, 361, 529, 841, 961, 1331, 1369, 1681, 1849, 2187, 2197, 2209, 2809, 3125, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6859, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 16129, 16807, 17161, 18769, 19321, 22201, 22801, 24389, 24649, 26569, 27889, 29791, 29929
Offset: 1
Examples
9 is in the sequence because 9 = 3^2; 25 is in the sequence because 25 = 5^2; 27 is in the sequence because 27 = 3^3, etc.
Links
- Eric Weisstein's World of Mathematics, Prime Power.
Programs
-
Mathematica
Select[Range[30000], PrimePowerQ[#1] && PrimeQ[PrimeOmega[#1]] && Mod[#1, 2] == 1 & ]
-
Python
from sympy import primepi, integer_nthroot, primerange def A280609(n): def f(x): return int(n+x-sum(primepi(integer_nthroot(x, p)[0])-1 for p in primerange(x.bit_length()))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024
Formula
a(n) = p^q, where p, q are primes and p > 2.
Sum_{n>=1} 1/a(n) = Sum_{p prime} P(p) - A051006 = 0.25699271237062131298..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 13 2024
Comments