cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280609 Odd prime powers with prime exponents.

Original entry on oeis.org

9, 25, 27, 49, 121, 125, 169, 243, 289, 343, 361, 529, 841, 961, 1331, 1369, 1681, 1849, 2187, 2197, 2209, 2809, 3125, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6859, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 16129, 16807, 17161, 18769, 19321, 22201, 22801, 24389, 24649, 26569, 27889, 29791, 29929
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 06 2017

Keywords

Comments

Intersection of A053810 and A061345.

Examples

			9 is in the sequence because 9 = 3^2;
25 is in the sequence because 25 = 5^2;
27 is in the sequence because 27 = 3^3, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[30000], PrimePowerQ[#1] && PrimeQ[PrimeOmega[#1]] && Mod[#1, 2] == 1 & ]
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A280609(n):
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x, p)[0])-1 for p in primerange(x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

Formula

a(n) = p^q, where p, q are primes and p > 2.
Sum_{n>=1} 1/a(n) = Sum_{p prime} P(p) - A051006 = 0.25699271237062131298..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 13 2024