A280618 Expansion of (Sum_{k>=1} x^(k^3))^2.
0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
a(9) = 2 because we have [8, 1] and [1, 8].
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
- Eric Weisstein's World of Mathematics, Cubic Number
- Index entries for sequences related to sums of cubes
Crossrefs
Programs
-
Mathematica
nmax = 150; CoefficientList[Series[(Sum[x^(k^3), {k, 1, nmax}])^2, {x, 0, nmax}], x]
-
PARI
A010057(n) = ispower(n, 3); A280618(n) = if(n<2, 0, sum(r=1,sqrtnint(n-1,3),A010057(n-(r^3)))); \\ Antti Karttunen, Nov 30 2021
Formula
G.f.: (Sum_{k>=1} x^(k^3))^2.
Comments