cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280634 Number of partitions of 2n into two refactorable parts.

Original entry on oeis.org

1, 1, 0, 0, 2, 0, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 0, 2, 1, 0, 2, 1, 0, 3, 0, 1, 1, 0, 2, 1, 1, 2, 0, 2, 0, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 3, 0, 5, 2, 2, 1, 2, 2, 3, 1, 4, 1, 4, 0, 5, 1, 2, 1, 3, 1, 3, 1, 3, 1, 5, 0, 7, 1, 3, 1, 3, 2, 3, 1, 5, 0, 6, 0, 7, 1, 3, 1, 5, 0, 3
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 06 2017

Keywords

Examples

			a(5) = 2; There are two partitions of 2*5 = 10 into two refactorable parts: (1,9) and (2,8).
		

Crossrefs

Programs

  • Maple
    with(numtheory): A280634:=n->add((1-signum((i mod tau(i))))*(1-signum((2*n-i) mod tau(2*n-i))), i=1..n): seq(A280634(n), n=1..150);
  • Mathematica
    Table[Sum[(1 - Sign[Mod[i, DivisorSigma[0, i]]]) (1 - Sign[Mod[#, DivisorSigma[0, #]]] &[2 n - i]), {i, n}], {n, 90}] (* Michael De Vlieger, Jan 07 2017 *)

Formula

a(n) = Sum_{i=1..n} (1-sign(i mod d(i))) * (1-sign((2n-i) mod d(2n-i))) where d(n) is the number of divisors of n.