A280634 Number of partitions of 2n into two refactorable parts.
1, 1, 0, 0, 2, 0, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 0, 2, 1, 0, 2, 1, 0, 3, 0, 1, 1, 0, 2, 1, 1, 2, 0, 2, 0, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 3, 0, 5, 2, 2, 1, 2, 2, 3, 1, 4, 1, 4, 0, 5, 1, 2, 1, 3, 1, 3, 1, 3, 1, 5, 0, 7, 1, 3, 1, 3, 2, 3, 1, 5, 0, 6, 0, 7, 1, 3, 1, 5, 0, 3
Offset: 1
Examples
a(5) = 2; There are two partitions of 2*5 = 10 into two refactorable parts: (1,9) and (2,8).
Links
- Eric Weisstein's World of Mathematics, Refactorable Number
- Index entries for sequences related to partitions
Programs
-
Maple
with(numtheory): A280634:=n->add((1-signum((i mod tau(i))))*(1-signum((2*n-i) mod tau(2*n-i))), i=1..n): seq(A280634(n), n=1..150);
-
Mathematica
Table[Sum[(1 - Sign[Mod[i, DivisorSigma[0, i]]]) (1 - Sign[Mod[#, DivisorSigma[0, #]]] &[2 n - i]), {i, n}], {n, 90}] (* Michael De Vlieger, Jan 07 2017 *)
Formula
a(n) = Sum_{i=1..n} (1-sign(i mod d(i))) * (1-sign((2n-i) mod d(2n-i))) where d(n) is the number of divisors of n.