A280659 Lexicographically earliest sequence of distinct positive terms such that the sum of two consecutive terms has at least 5 distinct prime factors.
1, 2309, 421, 1889, 841, 1469, 1261, 1049, 1681, 629, 2101, 209, 2521, 1769, 541, 2189, 121, 2609, 961, 1349, 1381, 929, 1801, 509, 2221, 89, 2641, 1649, 661, 2069, 241, 2489, 1081, 1229, 1501, 809, 1921, 389, 2341, 1949, 361, 2369, 1201, 1109, 1621, 689, 2041
Offset: 1
Examples
The first terms, alongside the primes p dividing a(n)+a(n+1), are: n a(n) p -- ---- -------------- 1 1 2, 3, 5, 7, 11 2 2309 2, 3, 5, 7, 13 3 421 2, 3, 5, 7, 11 4 1889 2, 3, 5, 7, 13 5 841 2, 3, 5, 7, 11 6 1469 2, 3, 5, 7, 13 7 1261 2, 3, 5, 7, 11 8 1049 2, 3, 5, 7, 13 9 1681 2, 3, 5, 7, 11 10 629 2, 3, 5, 7, 13 11 2101 2, 3, 5, 7, 11 12 209 2, 3, 5, 7, 13 13 2521 2, 3, 5, 11, 13 14 1769 2, 3, 5, 7, 11 15 541 2, 3, 5, 7, 13 16 2189 2, 3, 5, 7, 11 17 121 2, 3, 5, 7, 13 18 2609 2, 3, 5, 7, 17 19 961 2, 3, 5, 7, 11 20 1349 2, 3, 5, 7, 13
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, PARI program for A280659
- Rémy Sigrist, Scatterplot of the first 10000 terms, highlighting the rectangular clusters near the origin
- Rémy Sigrist, Scatterplot of the first 10000 terms, highlighting lpf(a(n)) = 2, 3 or 5
Comments