cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A280592 Numbers n such that phi(n) is a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 4, 6, 15, 16, 20, 24, 30, 185, 219, 273, 285, 292, 296, 304, 315, 364, 370, 380, 432, 438, 444, 456, 468, 504, 540, 546, 570, 630, 3235, 5176, 6470, 7764, 46843, 47423, 47693, 48053, 50431, 52403, 56231, 57965, 59555, 62855, 67655, 67865, 70735, 72123, 72297, 73473
Offset: 1

Views

Author

Altug Alkan, Jan 06 2017

Keywords

Comments

Note that the sequence of corresponding Fibonacci numbers is not the same as A134492. See also A280681.

Examples

			24 is a term because phi(24) = 8 is a Fibonacci number.
		

Crossrefs

Programs

  • Maple
    fibs:= {seq(combinat:-fibonacci(n),n=1..30)}:
    N:= combinat:-fibonacci(31):
    sort(convert(select(t -> t <= N, map(t -> op(numtheory:-invphi(t)), fibs)), list)); # Robert Israel, Nov 20 2019
  • Mathematica
    Module[{fibs=Fibonacci[Range[30]]},Select[Range[80000],MemberQ[ fibs,EulerPhi[ #]]&]] (* Harvey P. Dale, Jul 04 2021 *)
  • PARI
    isFibonacci(n)=my(k=n^2); issquare(k+=(k+1)<<2) || (n>0 && issquare(k-8));
    is(n)=isFibonacci(eulerphi(n));

A335976 Numbers k such that Fibonacci(6*k) is not a totient.

Original entry on oeis.org

0, 11, 13, 17, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 113, 121, 131, 137, 139, 141, 149, 151, 157, 167, 173, 191, 193, 199, 223, 229, 233, 239, 241, 243, 257, 263, 271, 281, 283, 293, 311, 313, 317, 321, 331, 339, 347, 349, 353, 373, 389, 397, 401, 419, 421, 431, 433, 443, 449, 457, 461, 479, 487, 509, 521, 541, 557, 573, 577, 587, 599, 613, 617, 619, 631, 641, 643, 653, 661, 673, 733, 739
Offset: 1

Views

Author

Altug Alkan, Jul 03 2020

Keywords

Comments

Conjecture: Sequence contains infinitely many primes.

Examples

			11 is a term since Fibonacci(66) = 27777890035288 is not a totient number.
		

Crossrefs

Programs

  • PARI
    isok(n) = !istotient(fibonacci(6*n))

Extensions

a(12)-a(20) from Max Alekseyev, Aug 02 2020
Terms a(21) onward from Max Alekseyev, May 19 2024
Showing 1-2 of 2 results.