A280708 Lexicographically earliest sequence such that no subsequence sums to a prime.
1, 8, 24, 24, 86, 1260, 1890, 14136, 197400, 10467660, 1231572090
Offset: 1
Examples
For n = 4, a(4) = 24 because all subsets have nonprime sums: 1 + 8 = 9 = 3^2 1 + 24 = 25 = 5^2 8 + 24 = 32 = 2^5 24 + 24 = 48 = 2^4*3 1 + 8 + 24 = 33 = 3*11 1 + 24 + 24 = 49 = 7^2 8 + 24 + 24 = 56 = 2^3*7 1 + 8 + 24 + 24 = 57 = 3*19
Crossrefs
Cf. A052349.
Programs
-
Maple
S:= {0}: count:= 0: x:= 1: while x < 10^6 do if ormap(s -> isprime(s+x), S) then x:= x+1 else count:= count+1; A[count]:= x; S:= S union map(`+`,S,x); fi od: seq(A[i],i=1..count); # Robert Israel, Jan 20 2017
-
Mathematica
t = {1}; c = 1; Print[1]; While[Length[t] < 11, r = Rest[Subsets[t]]; s = Table[Total[r[[i]]], {i, Length[r]}]; While[PrimeQ[c] || Union[PrimeQ[s + c]] != {False}, c++]; Print[c]; AppendTo[t, c]] (* Hans Havermann, Jan 20 2017 *)
Extensions
a(9) and a(10) from Dmitry Kamenetsky, Jan 12 2017
a(11) from Hans Havermann, Jan 20 2017
Comments