A280759 Generalized Catalan triangle A_3 read by rows.
1, 1, 1, 1, 3, 3, 3, 2, 1, 12, 12, 12, 9, 6, 3, 1, 55, 55, 55, 43, 31, 19, 10, 4, 1, 273, 273, 273, 218, 163, 108, 65, 34, 15, 5, 1, 1428, 1428, 1428, 1155, 882, 609, 391, 228, 120, 55, 21, 6, 1, 7752, 7752, 7752, 6324, 4896, 3468, 2313, 1431, 822, 431, 203
Offset: 0
Examples
Triangle begins: 1, 1, 1, 1, 3, 3, 3, 2, 1, 12, 12, 12, 9, 6, 3, 1, 55, 55, 55, 43, 31, 19, 10, 4, 1, 273, 273, 273, 218, 163, 108, 65, 34, 15, 5, 1, 1428, 1428, 1428, 1155, 882, 609, 391, 228, 120, 55, 21, 6, 1, ...
Links
- Lars Blomberg, Table of n, a(n) for n = 0..1599 (the first 40 rows)
- Toufik Mansour, I. L. Ramirez, Enumerations of polyominoes determined by Fuss-Catalan words, Australas. J. Combin. 81 (3) (2021) 47-457
- D. Merlini, R. Sprugnoli, M. C. Verri, The Tennis Ball Problem, J. Comb. Theory A 99 (2002) 307-344, Table 2
- Sheng-Liang Yang, LJ Wang, Taylor expansions for the m-Catalan numbers, Australasian Journal of Combinatorics, Volume 64(3) (2016), Pages 420-431. Formula (5).
Extensions
More terms from Lars Blomberg, Jan 25 2017