cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062745 Generalized Catalan array FS(3; n,r).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 3, 3, 1, 3, 6, 9, 12, 12, 12, 1, 4, 10, 19, 31, 43, 55, 55, 55, 1, 5, 15, 34, 65, 108, 163, 218, 273, 273, 273, 1, 6, 21, 55, 120, 228, 391, 609, 882, 1155, 1428, 1428, 1428, 1, 7, 28, 83, 203, 431, 822, 1431, 2313, 3468, 4896, 6324, 7752, 7752
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

In the Frey-Sellers reference this array appears in Table 2, p. 143 and is called {n over r}_{m-1}, with m=3.
The step width sequence of this staircase array is [1,2,2,2,....], i.e., the degree of the row polynomials is [0,2,4,6,...] = A005843.
The columns r=0..5 give A000012 (powers of 1), A000027 (natural), A000217 (triangular), A062748, A005718, A062749.
Number of lattice paths from (0,0) to (r,n) using steps h=(1,0), v=(0,1) and staying on or above the line y = x/2. Example: a(3,2)=6 because from (0,0) to (2,3) we have the following valid paths: vvvhh, vvhvh, vvhhv, vhvvh, vhvhvh and vhvvh (see the Niederhausen reference). - Emeric Deutsch, Jun 24 2005

Examples

			Array begins:
  {1};
  {1,1,1};
  {1,2,3,3,3};
  {1,3,6,9,12,12,12};
  ...;
N(3; 1,x) = 3-3*x+x^2.
		

Crossrefs

Programs

  • Maple
    a:=proc(n,r) if r<=2*n then binomial(n+r,r)-(-1)^(r-1)*sum(binomial(3*i,i)*binomial(i-n-1,r-1-2*i)/(2*i+1),i=0..floor((r-1)/2)) else 0 fi end: for n from 0 to 8 do seq(a(n,r),r=0..2*n) od; # yields sequence in triangular form # Emeric Deutsch, Jun 24 2005
  • Mathematica
    a[0, 0] = 1; a[, -1] = 0; a[n, r_] /; r > 2*n = 0; a[n_, r_] := a[n, r] = a[n, r-1] + a[n-1, r]; Table[a[n, r], {n, 0, 7}, {r, 0, 2*n}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)

Formula

a(0,0)=1, a(n,-1)=0, n >= 1; a(n,r) = a(n, r-1) + a(n-1, r) if r <= 2n, 0 otherwise.
G.f. for column r = 2*k+j, k >= 0, j=1, 2: (x^(k+1))*N(3; k, x)/ (1-x)^(2*k+1+j), with row polynomials N(3; k, x) of array A062746; for column r=0: 1/(1-x).
a(n,r) = binomial(n+r, r) - (-1)^(r-1)*Sum_{i=0..floor((r-1)/2)} binomial(3i, i)*binomial(i-n-1, r-1-2i)/(2i+1), 0 <= r <= 2n (see the Niederhausen reference, eq. (17)). - Emeric Deutsch, Jun 24 2005

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003

A334680 a(n) is the total number of down-steps after the final up-step in all 2-Dyck paths of length 3*n (n up-steps and 2*n down-steps).

Original entry on oeis.org

0, 2, 9, 43, 218, 1155, 6324, 35511, 203412, 1184040, 6983925, 41652468, 250763464, 1521935948, 9301989144, 57203999295, 353701790376, 2197600497330, 13713291247635, 85907187607395, 540072341320050, 3406202392821375, 21545888897092560, 136655834260685220, 868897745157965328
Offset: 0

Views

Author

Andrei Asinowski, May 08 2020

Keywords

Comments

A 2-Dyck path is a lattice path with steps U = (1, 2), d = (1, -1) that starts at (0,0), stays (weakly) above the x-axis, and ends at the x-axis.

Examples

			For n = 2, the a(2) = 9 is the total number of down-steps after the last up-step in UddUdd, UdUddd, UUdddd.
		

Crossrefs

First order differences of A001764.
The 4th column of A280759.
Cf. A062745.

Programs

  • Maple
    alias(PS=ListTools:-PartialSums): A334680List := proc(m) local A, P, n;
    A := [0,2]; P := [1,2]; for n from 1 to m - 2 do P := PS(PS([op(P), P[-1]]));
    A := [op(A), P[-1]] od; A end: A334680List(25); # Peter Luschny, Mar 26 2022
  • Mathematica
    a[n_] := Binomial[3*n + 4, n + 1]/(3*n + 4) - Binomial[3*n + 1, n]/(3*n + 1); Array[a, 25, 0] (* Amiram Eldar, May 13 2020 *)
  • SageMath
    [(17 + 23*n)*binomial(3*n, n-1)/(2*n+2)/(2*n+3) for n in srange(30)] # Benjamin Hackl, May 13 2020

Formula

a(n) = binomial(3*(n+1) + 1, n+1)/(3*(n+1) + 1) - binomial(3*n + 1, n)/(3*n + 1).
a(n) = (17 + 23*n)*binomial(3*n, n - 1)/((2*n + 2)*(2*n + 3)).
a(n) = A062745(n+1, 2*n-1).
Showing 1-2 of 2 results.