cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A062748 Fourth column (r=3) of FS(3) staircase array A062745.

Original entry on oeis.org

3, 9, 19, 34, 55, 83, 119, 164, 219, 285, 363, 454, 559, 679, 815, 968, 1139, 1329, 1539, 1770, 2023, 2299, 2599, 2924, 3275, 3653, 4059, 4494, 4959, 5455, 5983, 6544, 7139, 7769, 8435, 9138, 9879, 10659, 11479, 12340, 13243, 14189, 15179, 16214, 17295, 18423
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

In the Frey-Sellers reference this sequence is called {(n+2) over 3}_{2}, n >= 0.
If X is an n-set and Y a fixed (n-3)-subset of X then a(n-3) is equal to the number of 3-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=6, a(n-6) = coeff(charpoly(A,x), x^(n-2)). - Milan Janjic, Jan 26 2010
For n>=4, a(n-4) is the number of permutations of 1,2,...,n, such that n-3 is the only up-point, or, the same, a(n-4) is up-down coefficient {n,4} (see comment in A060351). - Vladimir Shevelev, Feb 14 2014

Examples

			G.f. = 3 + 9*x + 19*x^2 + 34*x^3 + 55*x^4 + 83*x^5 + 119*x^6 + 164*x^7 + ...
		

Crossrefs

A column of triangle A014473.

Programs

  • Magma
    [Binomial(n+4,3) -1 : n in [0..50]]; // G. C. Greubel, Apr 22 2024
    
  • Maple
    seq(((n^3-n)/6)-1,n=3..40); # Zerinvary Lajos, May 05 2007
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{3,9,19,34},40] (* Harvey P. Dale, Jan 13 2019 *)
    Binomial[4+Range[0,50], 3] -1 (* G. C. Greubel, Apr 22 2024 *)
  • PARI
    {a(n) = binomial(n+4, 3) - 1}; /* Michael Somos, Jan 28 2018 */
    
  • SageMath
    [binomial(n+4,3) - 1 for n in range(51)] # G. C. Greubel, Apr 22 2024

Formula

a(n) = A062745(n+2, 3) = binomial(n+4, 3) - 1 = (n+1)*(n^2 + 8*n + 18)/3!.
G.f.: N(3;1, x)/(1-x)^4 with N(3;1, x) = 3 - 3*x + x^2, polynomial of the second row of A062746.
a(n-3) = ((n^3 - n)/6) - 1, n >= 3. - Zerinvary Lajos, May 05 2007
a(n) = A000292(n+2) - 1. - Zerinvary Lajos, May 05 2007
a(n) = Sum_{i=2..n} i*(i+1)/2. - Artur Jasinski, Mar 14 2008
a(n) = -A050407(-1-n) for all n in Z. - Michael Somos, Jan 28 2018
a(n) = A000292(n+3) - A000124(n+3). - Torlach Rush, Aug 03 2018
E.g.f.: (1/6)*(18 + 36*x + 12*x^2 + x^3)*exp(x). - G. C. Greubel, Apr 22 2024

A062749 Sixth column (r=5) of FS(3) staircase array A062745.

Original entry on oeis.org

12, 43, 108, 228, 431, 753, 1239, 1944, 2934, 4287, 6094, 8460, 11505, 15365, 20193, 26160, 33456, 42291, 52896, 65524, 80451, 97977, 118427, 142152, 169530, 200967, 236898, 277788, 324133, 376461
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

In the Frey-Sellers reference this sequence is called {(n+3) over 5}_{2}, n >= 0.

Programs

  • Maple
    seq(coeff(series((3*x^4-15*x^3+30*x^2-29*x+12)/(1-x)^6,x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 30 2018
  • PARI
    Vec((12 - 29*x + 30*x^2 - 15*x^3 + 3*x^4) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Oct 30 2018

Formula

a(n) = A062745(n+3, 5)= -3+binomial(n+4, 3)*(n^2+16*n+75)/20 = (n+1)*(n^4+24*n^3+221*n^2+894*n+1440)/5!.
G.f.: N(3;2, x)/(1-x)^6 with N(3;2, x)= 12-29*x+30*x^2-15*x^3+3*x^4, polynomial of the third row of A062746.
From Colin Barker, Oct 30 2018: (Start)
G.f.: (12 - 29*x + 30*x^2 - 15*x^3 + 3*x^4) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)

A009766 Catalan's triangle T(n,k) (read by rows): each term is the sum of the entries above and to the left, i.e., T(n,k) = Sum_{j=0..k} T(n-1,j).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 5, 1, 4, 9, 14, 14, 1, 5, 14, 28, 42, 42, 1, 6, 20, 48, 90, 132, 132, 1, 7, 27, 75, 165, 297, 429, 429, 1, 8, 35, 110, 275, 572, 1001, 1430, 1430, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862, 1, 10, 54, 208, 637, 1638, 3640, 7072, 11934
Offset: 0

Views

Author

Keywords

Comments

The entries in this triangle (in its many forms) are often called ballot numbers.
T(n,k) = number of standard tableaux of shape (n,k) (n > 0, 0 <= k <= n). Example: T(3,1) = 3 because we have 134/2, 124/3 and 123/4. - Emeric Deutsch, May 18 2004
T(n,k) is the number of full binary trees with n+1 internal nodes and jump-length k. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump; the positive difference of the levels is called the jump distance; the sum of the jump distances in a given ordered tree is called the jump-length. - Emeric Deutsch, Jan 18 2007
The k-th diagonal from the right (k=1, 2, ...) gives the sequence obtained by asking in how many ways can we toss a fair coin until we first get k more heads than tails. The k-th diagonal has formula k(2m+k-1)!/(m!(m+k)!) and g.f. (C(x))^k where C(x) is the generating function for the Catalan numbers, (1-sqrt(1-4*x))/(2*x). - Anthony C Robin, Jul 12 2007
T(n,k) is also the number of order-decreasing and order-preserving full transformations (of an n-element chain) of waist k (waist (alpha) = max(Im(alpha))). - Abdullahi Umar, Aug 25 2008
Formatted as an upper right triangle (see tables) a(c,r) is the number of different triangulated planar polygons with c+2 vertices, with triangle degree c-r+1 for the same vertex X (c=column number, r=row number, with c >= r >= 1). - Patrick Labarque, Jul 28 2010
The triangle sums, see A180662 for their definitions, link Catalan's triangle, its mirror is A033184, with several sequences, see crossrefs. - Johannes W. Meijer, Sep 22 2010
The m-th row of Catalan's triangle consists of the unique nonnegative differences of the form binomial(m+k,m)-binomial(m+k,m+1) with 0 <= k <= m (See Links). - R. J. Cano, Jul 22 2014
T(n,k) is also the number of nondecreasing parking functions of length n+1 whose maximum element is k+1. For example T(3,2) = 5 because we have (1,1,1,3), (1,1,2,3), (1,2,2,3), (1,1,3,3), (1,2,3,3). - Ran Pan, Nov 16 2015
T(n,k) is the number of Dyck paths from (0,0) to (n+2,n+2) which start with n-k+2 east steps and touch the diagonal y=x only on the last north step. - Felipe Rueda, Sep 18 2019
T(n-1,k) for k < n is number of well-formed strings of n parenthesis pairs with prefix of exactly n-k opening parenthesis; T(n,n) = T(n,n-1). - Hermann Stamm-Wilbrandt, May 02 2021

Examples

			Triangle begins in row n=0 with 0 <= k <= n:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  5,   5;
  1, 4,  9,  14,  14;
  1, 5, 14,  28,  42,   42;
  1, 6, 20,  48,  90,  132,  132;
  1, 7, 27,  75, 165,  297,  429,  429;
  1, 8, 35, 110, 275,  572, 1001, 1430, 1430;
  1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862;
		

References

  • William Feller, Introduction to Probability Theory and its Applications, vol. I, ed. 2, chap. 3, sect. 1,2.
  • Ki Hang Kim, Douglas G. Rogers, and Fred W. Roush, Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013).
  • D. E. Knuth, TAOCP, Vol. 4, Section 7.2.1.6, Eq. 22, p. 451.
  • C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., 14 (1922), 55-62, 122-138 and 143-146.
  • M. Bellon, Query 5467, L'Intermédiaire des Mathématiciens, 4 (1925), 11; H. Ory, 4 (1925), 120. - N. J. A. Sloane, Mar 09 2022
  • Andrzej Proskurowski and Ekaputra Laiman, Fast enumeration, ranking, and unranking of binary trees. Proceedings of the thirteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1982). Congr. Numer. 35 (1982), 401-413.MR0725898 (85a:68152).
  • M. Welsch, Note #371, L'Intermédiaire des Mathématiciens, 2 (1895), pp. 235-237. - N. J. A. Sloane, Mar 02 2022

Crossrefs

The following are all versions of (essentially) the same Catalan triangle: A009766, A008315, A028364, A030237, A047072, A053121, A059365, A062103, A099039, A106566, A130020, A140344.
Sums of the shallow diagonals give A001405, central binomial coefficients: 1=1, 1=1, 1+1=2, 1+2=3, 1+3+2=6, 1+4+5=10, 1+5+9+5=20, ...
Row sums as well as the sums of the squares of the shallow diagonals give Catalan numbers (A000108).
Reflected version of A033184.
Triangle sums (see the comments): A000108 (Row1), A000957 (Row2), A001405 (Kn11), A014495 (Kn12), A194124 (Kn13), A030238 (Kn21), A000984 (Kn4), A000958 (Fi2), A165407 (Ca1), A026726 (Ca4), A081696 (Ze2).

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],m->Binomial(n+m,n)*(n-m+1)/(n+1)))); # Muniru A Asiru, Feb 18 2018
    
  • Haskell
    a009766 n k = a009766_tabl !! n !! k
    a009766_row n = a009766_tabl !! n
    a009766_tabl = iterate (\row -> scanl1 (+) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Magma
    [[Binomial(n+k,n)*(n-k+1)/(n+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 07 2019
    
  • Maple
    A009766 := proc(n,k) binomial(n+k,n)*(n-k+1)/(n+1); end proc:
    seq(seq(A009766(n,k), k=0..n), n=0..10); # R. J. Mathar, Dec 03 2010
  • Mathematica
    Flatten[NestList[Append[Accumulate[#], Last[Accumulate[#]]] &, {1}, 9]] (* Birkas Gyorgy, May 19 2012 *)
    T[n_, k_] := T[n, k] = Which[k == 0, 1, k>n, 0, True, T[n-1, k] + T[n, k-1] ]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 07 2016 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, binomial(n+1+k, k) * (n+1-k) / (n+1+k) )}; /* Michael Somos, Oct 17 2006 */
    
  • PARI
    b009766=(n1=0,n2=100)->{my(q=if(!n1,0,binomial(n1+1,2)));for(w=n1,n2,for(k=0,w,write("b009766.txt",1*q" "1*(binomial(w+k,w)-binomial(w+k,w+1)));q++))} \\ R. J. Cano, Jul 22 2014
    
  • Python
    from math import comb, isqrt
    def A009766(n): return comb((a:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))+(b:=n-comb(a+1,2)),b)*(a-b+1)//(a+1) # Chai Wah Wu, Nov 12 2024
  • Sage
    @CachedFunction
    def ballot(p,q):
        if p == 0 and q == 0: return 1
        if p < 0 or p > q: return 0
        S = ballot(p-2, q) + ballot(p, q-2)
        if q % 2 == 1: S += ballot(p-1, q-1)
        return S
    A009766 = lambda n, k: ballot(2*k, 2*n)
    for n in (0..7): [A009766(n, k) for k in (0..n)]  # Peter Luschny, Mar 05 2014
    
  • Sage
    [[binomial(n+k,n)*(n-k+1)/(n+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 07 2019
    

Formula

T(n, m) = binomial(n+m, n)*(n-m+1)/(n+1), 0 <= m <= n.
G.f. for column m: (x^m)*N(2; m-1, x)/(1-x)^(m+1), m >= 0, with the row polynomials from triangle A062991 and N(2; -1, x) := 1.
G.f.: C(t*x)/(1-x*C(t*x)) = 1 + (1+t)*x + (1+2*t+2*t^2)*x^2 + ..., where C(x) = (1-sqrt(1-4*x))/(2*x) is the Catalan function. - Emeric Deutsch, May 18 2004
Another version of triangle T(n, k) given by [1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 1, 1, 1, 1, 1, ...] = 1; 1, 0; 1, 1, 0; 1, 2, 2, 0; 1, 3, 5, 5, 0; 1, 4, 9, 14, 14, 0; ... where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 16 2005
O.g.f. (with offset 1) is the series reversion of x*(1+x*(1-t))/(1+x)^2 = x - x^2*(1+t) + x^3*(1+2*t) - x^4*(1+3*t) + ... . - Peter Bala, Jul 15 2012
Sum_{k=0..floor(n/2)} T(n-k+p-1, k+p-1) = A001405(n+2*p-2) - C(n+2*p-2, p-2), p >= 1. - Johannes W. Meijer, Oct 03 2013
Let A(x,t) denote the o.g.f. Then 1 + x*d/dx(A(x,t))/A(x,t) = 1 + (1 + t)*x + (1 + 2*t + 3*t^2)*x^2 + (1 + 3*t + 6*t^2 + 10*t^3)*x^3 + ... is the o.g.f. for A059481. - Peter Bala, Jul 21 2015
The n-th row polynomial equals the n-th degree Taylor polynomial of the function (1 - 2*x)/(1 - x)^(n+2) about 0. For example, for n = 4, (1 - 2*x)/(1 - x)^6 = 1 + 4*x + 9*x^2 + 14*x^3 + 14*x^4 + O(x^5). - Peter Bala, Feb 18 2018
T(n,k) = binomial(n + k + 1, k) - 2*binomial(n + k, k - 1), for 0 <= k <= n. - David Callan, Jun 15 2022

A005718 Quadrinomial coefficients: C(2+n,n) + C(3+n,n) + C(4+n,n).

Original entry on oeis.org

3, 12, 31, 65, 120, 203, 322, 486, 705, 990, 1353, 1807, 2366, 3045, 3860, 4828, 5967, 7296, 8835, 10605, 12628, 14927, 17526, 20450, 23725, 27378, 31437, 35931, 40890, 46345, 52328, 58872, 66011, 73780, 82215, 91353, 101232, 111891, 123370, 135710, 148953, 163142, 178321, 194535
Offset: 0

Views

Author

Keywords

Comments

If Y is an (n-3)-subset of an n-set X then, for n>=5, a(n-5) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007
This equation represents the number of numbers with <=n digits such that the sum of the digits is between 1 and 4 inclusive and no digit is larger than 3. - David Consiglio, Jr., Oct 27 2008
Row 2 of the convolution array A213548. - Clark Kimberling, Jun 20 2012

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(((n+14)*n+71)*n+130)*n/24+3: n in [0..45]]; // Vincenzo Librandi, Jun 15 2011
  • Maple
    A005718:=-(3-3*z+z**2)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[Plus@@Table[Binomial[i + n, n], {i, 2, 4}], {n, 0, 43}] (* From Alonso del Arte, Jun 14 2011 *)
  • PARI
    a(n)=(((n+14)*n+71)*n+130)*n/24+3 \\ Charles R Greathouse IV, Jun 14 2011
    

Formula

a(n) = binomial(n, 2)*(n^2+7*n+18)/12, n >= 2.
G.f.: (3-3*x+x^2)/(1-x)^5. (numerator polynomial is N4(4, x) from A063421).
a(n) = A008287(n, 4), n >= 2 (fifth column of quadrinomial coefficients).
a(n) = A062745(n, 4), n >= 2 (fifth column).
a(n) = 3*C(n+2,2) + 3*C(n+2,3) + C(n+2,4) (see comment in A071675). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
E.g.f.: exp(x)*(72 + 216*x + 120*x^2 + 20*x^3 + x^4)/24. - Stefano Spezia, May 09 2024

Extensions

Better description from Zerinvary Lajos, Dec 02 2005

A062746 Coefficient array for certain polynomials N(3; k,x) (rising powers of x).

Original entry on oeis.org

1, 3, -3, 1, 12, -29, 30, -15, 3, 55, -222, 405, -417, 252, -84, 12, 273, -1575, 4203, -6678, 6846, -4608, 1980, -495, 55, 1428, -10812, 38367, -83244, 121518, -124146, 89595, -44990, 15015, -3003, 273, 7752, -73017, 325164
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

The g.f. for the sequence of column r=2*k+1, k >= 0, of array A062745(n,r) is N(3; k,x)*(x^(k+1))/(1-x)^(2*k+2) with N(3; k,x) := sum(a(k,p)*x^p,p=0..2*k).
The m=0 column gives: A001764(n+1). The row sums give A000012 (powers of 1) and (unsigned) A062747.
The sequence of step width of this staircase array is [1,2,2,2,...], i.e. the degree of the row polynomials is [0,2,4,6,...]= A005843.

Examples

			{1}; {3,-3,1}; {12,-29,30,-15,3}; ...; N(3; 1,x)= 3-3*x+x^2.
		

Crossrefs

Cf. A062991.

Formula

a(k, p) := [x^p]N(3; k, x) with N(3; k, x)=(N(3; k-1, x)-A001764(k)*(1-x)^(2*k+1))/x, N(3; 0, x) := 1.
a(n, k)= a(n-1, k+1)+((-1)^k)*binomial(2*n+1, k+1)*binomial(3*n+1, n)/(3*n+1) if k=0, .., (2*n-3); a(n, k)= ((-1)^k)*binomial(2*n+1, k+1)*binomial(3*n+1, n)/(3*n+1) if k=(2*n-2), ..., 2*n; else 0.

A334680 a(n) is the total number of down-steps after the final up-step in all 2-Dyck paths of length 3*n (n up-steps and 2*n down-steps).

Original entry on oeis.org

0, 2, 9, 43, 218, 1155, 6324, 35511, 203412, 1184040, 6983925, 41652468, 250763464, 1521935948, 9301989144, 57203999295, 353701790376, 2197600497330, 13713291247635, 85907187607395, 540072341320050, 3406202392821375, 21545888897092560, 136655834260685220, 868897745157965328
Offset: 0

Views

Author

Andrei Asinowski, May 08 2020

Keywords

Comments

A 2-Dyck path is a lattice path with steps U = (1, 2), d = (1, -1) that starts at (0,0), stays (weakly) above the x-axis, and ends at the x-axis.

Examples

			For n = 2, the a(2) = 9 is the total number of down-steps after the last up-step in UddUdd, UdUddd, UUdddd.
		

Crossrefs

First order differences of A001764.
The 4th column of A280759.
Cf. A062745.

Programs

  • Maple
    alias(PS=ListTools:-PartialSums): A334680List := proc(m) local A, P, n;
    A := [0,2]; P := [1,2]; for n from 1 to m - 2 do P := PS(PS([op(P), P[-1]]));
    A := [op(A), P[-1]] od; A end: A334680List(25); # Peter Luschny, Mar 26 2022
  • Mathematica
    a[n_] := Binomial[3*n + 4, n + 1]/(3*n + 4) - Binomial[3*n + 1, n]/(3*n + 1); Array[a, 25, 0] (* Amiram Eldar, May 13 2020 *)
  • SageMath
    [(17 + 23*n)*binomial(3*n, n-1)/(2*n+2)/(2*n+3) for n in srange(30)] # Benjamin Hackl, May 13 2020

Formula

a(n) = binomial(3*(n+1) + 1, n+1)/(3*(n+1) + 1) - binomial(3*n + 1, n)/(3*n + 1).
a(n) = (17 + 23*n)*binomial(3*n, n - 1)/((2*n + 2)*(2*n + 3)).
a(n) = A062745(n+1, 2*n-1).

A118714 Determinant of n X n matrix whose diagonal contains the first n tetrahedral numbers and all other elements are 1's.

Original entry on oeis.org

1, 3, 27, 513, 17442, 959310, 79622730, 9475104870, 1553917198680, 340307866510920, 96987741955612200, 35206550329887228600, 15983773849768801784400, 8934929582020760197479600, 6066817186192096174088648400, 4944456006746558381882248446000
Offset: 1

Views

Author

Alexander Adamchuk, May 20 2006

Keywords

Comments

a(n+2) / a(n+1) = A062748(n) = A062745(n+2, 3)= binomial(n+4, 3)-1 = (n+1)*(n^2+8*n+18)/3!.

Examples

			The matrix begins:
1 1 1 1 1 1 1 ...
1 4 1 1 1 1 1 ...
1 1 10 1 1 1 1 ...
1 1 1 20 1 1 1 ...
1 1 1 1 35 1 1 ...
1 1 1 1 1 56 1 ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1,
          a(n-1) *(6+4*n+n^2)*(n-1)/6)
        end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Nov 15 2015
  • Mathematica
    Table[ Det[ DiagonalMatrix[ Table[ i*(i+1)(i+2)/6 - 1, {i, 1, n} ] ] + 1 ], {n, 1, 20} ]
    Table[Product[(k-3)*(k^2+2)/3!,{k,4,n+2}],{n,1,20}]
  • PARI
    a(n) = matdet(matrix(n, n, i, j, if(i==j, i*(i+1)*(i+2)/6, 1))) \\ Colin Barker, Nov 13 2015

Formula

a(n) = Det[ DiagonalMatrix[ Table[ i*(i+1)(i+2)/6 - 1, {i, 1, n} ] ] + 1 ].
a(n) = Product[(j-3)*(j^2+2)/3!,{j,4,n+2}].
a(n) = Product[(k+1)*(k^2+8*k+18)/3!,{k,0,n-2}] = Product[A062748(k),{k,0,n-2}].
a(n) ~ sqrt(Pi) * sinh(Pi*sqrt(2)) * n^(3*n + 9/2) / (11 * 2^(n-1) * 3^(n+1) * exp(3*n)). - Vaclav Kotesovec, Apr 17 2018

Extensions

a(15) and a(16) from Colin Barker, Nov 13 2015

A280759 Generalized Catalan triangle A_3 read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 3, 2, 1, 12, 12, 12, 9, 6, 3, 1, 55, 55, 55, 43, 31, 19, 10, 4, 1, 273, 273, 273, 218, 163, 108, 65, 34, 15, 5, 1, 1428, 1428, 1428, 1155, 882, 609, 391, 228, 120, 55, 21, 6, 1, 7752, 7752, 7752, 6324, 4896, 3468, 2313, 1431, 822, 431, 203
Offset: 0

Views

Author

N. J. A. Sloane, Jan 16 2017

Keywords

Examples

			Triangle begins:
     1,
     1,    1,    1,
     3,    3,    3,    2,   1,
    12,   12,   12,    9,   6,   3,   1,
    55,   55,   55,   43,  31,  19,  10,   4,   1,
   273,  273,  273,  218, 163, 108,  65,  34,  15,  5,  1,
  1428, 1428, 1428, 1155, 882, 609, 391, 228, 120, 55, 21, 6, 1,
  ...
		

Crossrefs

Cf. A001764 (row sums?), A062745 (rows reversed)

Extensions

More terms from Lars Blomberg, Jan 25 2017

A127927 G.f. A(x) satisfies: [x^(2n)] A(x)/Catalan(x)^n = A001764(n) = C(3n,n)/(2n+1) and [x^(2n+1)] A(x)/Catalan(x)^n = A001764(n+1) for n>=0, where Catalan(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 3, 9, 31, 108, 391, 1431, 5319, 19926, 75252, 285750, 1090491, 4177774, 16060401, 61916977, 239307063, 926929746, 3597296770, 13984508500, 54448030092, 212282062488, 828673761978, 3238495227846, 12669206034339
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2007

Keywords

Comments

Main diagonal of triangle A062745: a(n) = A062745(n,n) (see formula given in A062745 by Emeric Deutsch).

Crossrefs

Cf. A062745; A001764 (ternary trees), A000108 (Catalan).

Programs

  • Magma
    [1] cat [Binomial(2*n,n) - (-1)^(n-1)*(&+[Binomial(3*k, k)*Binomial(k-n - 1, n-2*k-1)/(2*k+1): k in [0..Floor((n-1)/2)]]): n in [1..50]]; // G. C. Greubel, Apr 30 2018
  • Mathematica
    a[n_] := Binomial[2*n, n] - (-1)^(n-1)*Sum[ Binomial[3*k, k]*Binomial[k - n-1, n-1-2*k]/(2*k+1), {k, 0, Floor[(n-1)/2]}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 30 2018 *)
  • PARI
    {a(n)=binomial(2*n,n)+(-1)^n*sum(i=0,(n-1)\2, binomial(3*i,i) *binomial(i-n-1,n-1-2*i)/(2*i+1))}
    

Formula

a(n) = C(2*n,n) - (-1)^(n-1)*Sum_{i=0..[(n-1)/2]} C(3*i,i)*C(i-n-1,n-1-2*i)/(2*i+1).
From Vaclav Kotesovec, May 01 2018: (Start)
Recurrence: 2*(n-1)*n*(2*n + 1)*(5*n - 6)*a(n) = (n-1)^2*(115*n^2 - 138*n + 56)*a(n-1) + 4*(n-2)*(n+1)*(2*n - 3)*(5*n - 11)*a(n-2) - 36*(n-2)*(2*n - 5)*(2*n - 3)*(5*n - 1)*a(n-3).
a(n) ~ 4^n / (phi^2 * sqrt(Pi*n)), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. (End)
Showing 1-9 of 9 results.