cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280786 Number of topologically distinct sets of n circles with one pair intersecting.

Original entry on oeis.org

1, 4, 15, 50, 162, 506, 1558, 4727, 14227, 42521, 126506, 374969, 1108476, 3269902, 9630631, 28328999, 83251569, 244471484, 717486860, 2104777227, 6172357873, 18096097750, 53044095421, 155464365080, 455601800970, 1335107222743, 3912330438784, 11464463809180, 33595343643160
Offset: 2

Views

Author

N. J. A. Sloane, Jan 20 2017

Keywords

Crossrefs

Row sums of A280787.
Column k=1 of A261070.

Programs

  • Maple
    A280786 := proc(N)
        if N < 2 then
            0;
        else
            add(A280787(N,f),f=1..N-1) ;
        end if;
    end proc:
    A280787 := proc(N,f)
        option remember ;
        local Npr,ct ;
        if f = N then
            return 0;
        elif f = N-1 then
            return 1;
        elif f = 1 then
            A280786(N-1)+A280788(N-2) ;
        else
            ct := 0 ;
            for Npr from 1 to N-1 do
                ct := ct+procname(Npr,1)*A033185(N-Npr,f-1) ;
            end do:
            ct ;
        end if;
    end proc:
    seq(A280786(n),n=2..30) ; # R. J. Mathar, Mar 06 2017
  • Mathematica
    a81[n_] := a81[n] = If[n <= 1, n, Sum[a81[n - j]*DivisorSum[j, #1*a81[#1] &], {j, n - 1}]/(n - 1)];
    A027852[n_] := Module[{dh = 0, np}, For[np = 0, np <= n, np++, dh = a81[np]*a81[n - np] + dh]; If[EvenQ[n], dh = a81[n/2] + dh]; dh/2];
    A280788[n_] := If[n == 0, 1, Sum[a81[np + 1]*A027852[n - np + 2], {np, 0, n}]];
    t[n_] := t[n] = Module[{d, j}, If[n == 1, 1, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n - j], {j, 1, n - 1}]/(n - 1)]];
    b[1, 1, 1] = 1;
    b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[t[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]]; A033185[n_, k_] := b[n, n, k];
    A280786[n_] := If[n < 2, 0, Sum[A280787[n, f], {f, 1, n - 1}]];
    A280787[n_, f_] := A280787[n, f] = Module[{ct}, Which[f == n, Return[0], f == n - 1, Return[1], f == 1, Return[A280786[n - 1] + A280788[n - 2]], True, ct = 0; Do[ct += A280787[np, 1]*A033185[n - np, f - 1], {np, 1, n - 1}]]; ct];
    Table[A280786[n], {n, 2, 30}] (* Jean-François Alcover, Nov 23 2017, after R. J. Mathar and Alois P. Heinz *)