A280786 Number of topologically distinct sets of n circles with one pair intersecting.
1, 4, 15, 50, 162, 506, 1558, 4727, 14227, 42521, 126506, 374969, 1108476, 3269902, 9630631, 28328999, 83251569, 244471484, 717486860, 2104777227, 6172357873, 18096097750, 53044095421, 155464365080, 455601800970, 1335107222743, 3912330438784, 11464463809180, 33595343643160
Offset: 2
Keywords
Links
- R. J. Mathar, Topologically Distinct Sets of Non-intersecting Circles in the Plane, arXiv:1603.00077 [math.CO], 2016, row sums Table 7.
Programs
-
Maple
A280786 := proc(N) if N < 2 then 0; else add(A280787(N,f),f=1..N-1) ; end if; end proc: A280787 := proc(N,f) option remember ; local Npr,ct ; if f = N then return 0; elif f = N-1 then return 1; elif f = 1 then A280786(N-1)+A280788(N-2) ; else ct := 0 ; for Npr from 1 to N-1 do ct := ct+procname(Npr,1)*A033185(N-Npr,f-1) ; end do: ct ; end if; end proc: seq(A280786(n),n=2..30) ; # R. J. Mathar, Mar 06 2017
-
Mathematica
a81[n_] := a81[n] = If[n <= 1, n, Sum[a81[n - j]*DivisorSum[j, #1*a81[#1] &], {j, n - 1}]/(n - 1)]; A027852[n_] := Module[{dh = 0, np}, For[np = 0, np <= n, np++, dh = a81[np]*a81[n - np] + dh]; If[EvenQ[n], dh = a81[n/2] + dh]; dh/2]; A280788[n_] := If[n == 0, 1, Sum[a81[np + 1]*A027852[n - np + 2], {np, 0, n}]]; t[n_] := t[n] = Module[{d, j}, If[n == 1, 1, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n - j], {j, 1, n - 1}]/(n - 1)]]; b[1, 1, 1] = 1; b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[t[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]]; A033185[n_, k_] := b[n, n, k]; A280786[n_] := If[n < 2, 0, Sum[A280787[n, f], {f, 1, n - 1}]]; A280787[n_, f_] := A280787[n, f] = Module[{ct}, Which[f == n, Return[0], f == n - 1, Return[1], f == 1, Return[A280786[n - 1] + A280788[n - 2]], True, ct = 0; Do[ct += A280787[np, 1]*A033185[n - np, f - 1], {np, 1, n - 1}]]; ct]; Table[A280786[n], {n, 2, 30}] (* Jean-François Alcover, Nov 23 2017, after R. J. Mathar and Alois P. Heinz *)