cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A280823 Numbers with an odd number of digits and with an odd number of distinct digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 102, 103, 104, 105, 106, 107, 108, 109, 111, 120, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 142, 143, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 157, 158, 159, 160, 162, 163, 164, 165, 167, 168, 169, 170, 172, 173, 174, 175, 176, 178, 179, 180
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 08 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 180], Mod[Length[IntegerDigits[#1]], 2] == 1 && Mod[Length[Union[IntegerDigits[#1]]], 2] == 1 & ]
    Join[{0},Select[Range[200],AllTrue[{IntegerLength[#],Count[DigitCount[#],?(#>0&)]},OddQ]&]] (* _Harvey P. Dale, Dec 16 2023 *)

Formula

A000035(A055642(a(n))) = 1.
A000035(A043537(a(n))) = 1.

A280825 Numbers with an odd number of digits and with an even number of distinct digits.

Original entry on oeis.org

100, 101, 110, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 131, 133, 141, 144, 151, 155, 161, 166, 171, 177, 181, 188, 191, 199, 200, 202, 211, 212, 220, 221, 223, 224, 225, 226, 227, 228, 229, 232, 233, 242, 244, 252, 255, 262, 266, 272, 277, 282, 288, 292, 299, 300, 303, 311, 313, 322, 323, 330, 331, 332, 334, 335
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 08 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[335], Mod[Length[IntegerDigits[#1]], 2] == 1 && Mod[Length[Union[IntegerDigits[#1]]], 2] == 0 & ]

Formula

A000035(A055642(a(n))) = 1.
A000035(A043537(a(n))) = 0.
a(n) = A210666(n) for n < 244.

A280826 Numbers with an even number of digits and with an odd number of distinct digits.

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1030, 1031, 1033, 1040, 1041, 1044, 1050, 1051, 1055, 1060, 1061, 1066, 1070, 1071, 1077, 1080, 1081, 1088, 1090, 1091, 1099, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 08 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1110], Mod[Length[IntegerDigits[#1]], 2] == 0 && Mod[Length[Union[IntegerDigits[#1]]], 2] == 1 & ]
    endQ[n_]:=Module[{idn=IntegerDigits[n]},EvenQ[Length[idn]]&&OddQ[ Length[ Union[ idn]]]]; Select[Range[1200],endQ] (* Harvey P. Dale, Mar 31 2019 *)

Formula

A000035(A055642(a(n))) = 0.
A000035(A043537(a(n))) = 1.
Showing 1-3 of 3 results.