A280827 a(n) = A076649(n) - A055642(n).
-1, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 1, 0, 3, 1, 1, 0, 2, 0, 1, 1, 2, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 1, 2, 1, 1, 0, 2, 0, 1, 1, 4, 1, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 1, 2, 0, 3, 2, 1, 0, 2, 1, 1, 1, 3, 0, 2, 1, 2, 1, 1, 1, 4, 0, 1, 2, 1
Offset: 1
Examples
a(10) = 0, as 2*5 have 2 digits total, and 10 has 2 digits. Thus a(10) = 2-2 = 0. a(1) is defined to be -1, as the empty product has 0 digits, and 1 has 1 digit. Thus a(1) = 0-1 = -1.
Links
- Ely Golden, Table of n, a(n) for n = 1..10000
- Ely Golden, Proof that a(n)>=0 for all n>1
Programs
-
SageMath
def digits(x, n): if(x<=0|n<2): return [] li=[] while(x>0): d=divmod(x, n) li.insert(0,d[1]) x=d[0] return li; def factorDigits(x, n): if(x<=0|n<2): return [] li=[] f=list(factor(x)) for c in range(len(f)): for d in range(f[c][1]): ld=digits(f[c][0], n) li+=ld return li; def digitDiff(x,n): return len(factorDigits(x,n))-len(digits(x,n)) radix=10 index=1 while(index<=10000): print(str(index)+" "+str(digitDiff(index,radix))) index+=1
Comments