cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280829 Number of partitions of n into two squarefree semiprimes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 1, 2, 0, 0, 1, 3, 1, 0, 1, 2, 2, 1, 2, 3, 2, 0, 2, 4, 3, 1, 0, 3, 2, 2, 2, 3, 2, 0, 2, 4, 5, 0, 1, 2, 3, 2, 3, 5, 2, 2, 3, 7, 4, 1, 2, 3, 4, 2, 5, 4, 2, 0, 4, 6, 2, 2, 2, 4, 3, 4
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 08 2017

Keywords

Examples

			a(20) = 2; there are 2 partitions of 20 into two squarefree semiprimes: (14,6) and (10,10).
		

Crossrefs

Programs

  • Maple
    with(numtheory): A280829:=n->add(floor(bigomega(i)*mobius(i)^2/2)*floor(2*mobius(i)^2/bigomega(i))*floor(bigomega(n-i)*mobius(i)^2/2)*floor(2*mobius(n-i)^2/bigomega(n-i)), i=2..floor(n/2)): seq(A280829(n), n=1..100);
  • Mathematica
    Table[Sum[Floor[PrimeOmega[i] MoebiusMu[i]^2 / 2] Floor[2 MoebiusMu[i]^2 / PrimeOmega[i]] Floor[PrimeOmega[n - i] MoebiusMu[i]^2 / 2] Floor[2 MoebiusMu[n - i]^2 / PrimeOmega[n - i]], {i, 2, Floor[n/2]}], {n, 1, 90}] (* Indranil Ghosh, Mar 10 2017, translated from Maple code *)
  • PARI
    for(n=1, 90, print1(sum(i=2, floor(n/2), floor(bigomega(i) * moebius(i)^2 / 2) * floor(2 * moebius(i)^2 / bigomega(i)) * floor(bigomega(n - i) * moebius(i)^2 / 2) * floor(2 * moebius(n - i)^2 / bigomega(n - i))),", ")) \\ Indranil Ghosh, Mar 10 2017

Formula

a(n) = Sum_{k=1..floor(n/2)} c(k) * c(n-k), where c = A280710.