A280829 Number of partitions of n into two squarefree semiprimes.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 1, 2, 0, 0, 1, 3, 1, 0, 1, 2, 2, 1, 2, 3, 2, 0, 2, 4, 3, 1, 0, 3, 2, 2, 2, 3, 2, 0, 2, 4, 5, 0, 1, 2, 3, 2, 3, 5, 2, 2, 3, 7, 4, 1, 2, 3, 4, 2, 5, 4, 2, 0, 4, 6, 2, 2, 2, 4, 3, 4
Offset: 1
Examples
a(20) = 2; there are 2 partitions of 20 into two squarefree semiprimes: (14,6) and (10,10).
Links
Programs
-
Maple
with(numtheory): A280829:=n->add(floor(bigomega(i)*mobius(i)^2/2)*floor(2*mobius(i)^2/bigomega(i))*floor(bigomega(n-i)*mobius(i)^2/2)*floor(2*mobius(n-i)^2/bigomega(n-i)), i=2..floor(n/2)): seq(A280829(n), n=1..100);
-
Mathematica
Table[Sum[Floor[PrimeOmega[i] MoebiusMu[i]^2 / 2] Floor[2 MoebiusMu[i]^2 / PrimeOmega[i]] Floor[PrimeOmega[n - i] MoebiusMu[i]^2 / 2] Floor[2 MoebiusMu[n - i]^2 / PrimeOmega[n - i]], {i, 2, Floor[n/2]}], {n, 1, 90}] (* Indranil Ghosh, Mar 10 2017, translated from Maple code *)
-
PARI
for(n=1, 90, print1(sum(i=2, floor(n/2), floor(bigomega(i) * moebius(i)^2 / 2) * floor(2 * moebius(i)^2 / bigomega(i)) * floor(bigomega(n - i) * moebius(i)^2 / 2) * floor(2 * moebius(n - i)^2 / bigomega(n - i))),", ")) \\ Indranil Ghosh, Mar 10 2017
Formula
a(n) = Sum_{k=1..floor(n/2)} c(k) * c(n-k), where c = A280710.