cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A337853 a(n) is the number of partitions of n as the sum of two Niven numbers.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 3, 2, 4, 3, 3, 4, 3, 3, 5, 3, 4, 5, 4, 4, 7, 4, 5, 6, 5, 3, 7, 4, 4, 6, 4, 2, 7, 3, 4, 5, 4, 3, 7, 3, 4, 5, 4, 3, 8, 3, 4, 6, 3, 3, 6, 2, 5, 6, 5, 3, 8, 4, 4, 6
Offset: 0

Views

Author

Marius A. Burtea, Sep 26 2020

Keywords

Comments

a(n) >= 1 for n >= 2 ?.
For n <= 200000, a(n) = 1 only for n = 2, 3, 299, (2 = 1 + 1, 3 = 1 + 2, 299 = 1 + 288) and a(n) = 2 only for n in {4, 5, 35, 59, 79, 95, 97, 149, 169, 179, 389}.

Examples

			0 and 1 cannot be decomposed as the sum of two Niven numbers, so a(0) = a(1) = 0.
4 = 1 + 3 = 2 + 2 and 1, 2, 3 are in A005349, so a(4) = 2.
15 = 3 + 12 = 5 + 10 = 6 + 9 = 7 + 8 and 3, 5, 6, 7, 8, 9, 10, 12 are in A005349, so a(15) = 4.
		

Crossrefs

Programs

  • Magma
    niven:=func; [#RestrictedPartitions(n,2,{k: k in [1..n-1] | niven(k)}): n in [0..100]];
  • Mathematica
    m = 100; nivens = Select[Range[m], Divisible[#, Plus @@ IntegerDigits[#]] &]; a[n_] := Length[IntegerPartitions[n, {2}, nivens]]; Array[a, m, 0] (* Amiram Eldar, Sep 27 2020 *)

A280832 Sum of the parts in the partitions of n into two squarefree semiprimes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 16, 0, 0, 0, 40, 21, 0, 0, 24, 25, 0, 27, 56, 29, 30, 31, 64, 0, 0, 35, 108, 37, 0, 39, 80, 82, 42, 86, 132, 90, 0, 94, 192, 147, 50, 0, 156, 106, 108, 110, 168, 114, 0, 118, 240, 305, 0, 63, 128, 195, 132, 201, 340, 138, 140
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 08 2017

Keywords

Examples

			a(20) = 40; there are two partitions of n into two squarefree semiprimes: (14,6) and (10,10). The sum of the parts in these partitions is 40.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A280832:=n->n*add(floor(bigomega(i)*mobius(i)^2/2)*floor(2*mobius(i)^2/bigomega(i))*floor(bigomega(n-i)*mobius(i)^2/2)*floor(2*mobius(n-i)^2/bigomega(n-i)), i=2..floor(n/2)): seq(A280832(n), n=1..100);
  • Mathematica
    Table[n Sum[Floor[PrimeOmega[i] MoebiusMu[i]^2/2] Floor[2 MoebiusMu[i]^2 / PrimeOmega[i]] Floor[PrimeOmega[n - i] MoebiusMu[i]^2 / 2] Floor[2 MoebiusMu[n - i]^2 / PrimeOmega[n - i]], {i, 2, Floor[n/2]}], {n, 1, 70}] (* Indranil Ghosh, Mar 09 2017, translated from Maple code *)
    spp[n_]:=Total[Flatten[Select[IntegerPartitions[n,{2}],AllTrue[#,SquareFreeQ] && PrimeOmega[ #]=={2,2}&]]]; Array[spp,70] (* Harvey P. Dale, Jun 12 2022 *)
  • PARI
    for(n=1, 70, print1(n * sum(i=2, floor(n/2), floor(bigomega(i) * moebius(i)^2 / 2) * floor(2*moebius(i)^2 / bigomega(i)) * floor(bigomega(n - i)* moebius(i)^2 / 2) * floor(2*moebius(n - i)^2 / bigomega(n - i))),", "))  \\ Indranil Ghosh, Mar 09 2017, translated from Maple code

Formula

a(n) = n * Sum_{k=1..floor(n/2)} c(k) * c(n-k), where c = A280710. - Wesley Ivan Hurt, Aug 31 2025
Showing 1-2 of 2 results.