cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280832 Sum of the parts in the partitions of n into two squarefree semiprimes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 16, 0, 0, 0, 40, 21, 0, 0, 24, 25, 0, 27, 56, 29, 30, 31, 64, 0, 0, 35, 108, 37, 0, 39, 80, 82, 42, 86, 132, 90, 0, 94, 192, 147, 50, 0, 156, 106, 108, 110, 168, 114, 0, 118, 240, 305, 0, 63, 128, 195, 132, 201, 340, 138, 140
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 08 2017

Keywords

Examples

			a(20) = 40; there are two partitions of n into two squarefree semiprimes: (14,6) and (10,10). The sum of the parts in these partitions is 40.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A280832:=n->n*add(floor(bigomega(i)*mobius(i)^2/2)*floor(2*mobius(i)^2/bigomega(i))*floor(bigomega(n-i)*mobius(i)^2/2)*floor(2*mobius(n-i)^2/bigomega(n-i)), i=2..floor(n/2)): seq(A280832(n), n=1..100);
  • Mathematica
    Table[n Sum[Floor[PrimeOmega[i] MoebiusMu[i]^2/2] Floor[2 MoebiusMu[i]^2 / PrimeOmega[i]] Floor[PrimeOmega[n - i] MoebiusMu[i]^2 / 2] Floor[2 MoebiusMu[n - i]^2 / PrimeOmega[n - i]], {i, 2, Floor[n/2]}], {n, 1, 70}] (* Indranil Ghosh, Mar 09 2017, translated from Maple code *)
    spp[n_]:=Total[Flatten[Select[IntegerPartitions[n,{2}],AllTrue[#,SquareFreeQ] && PrimeOmega[ #]=={2,2}&]]]; Array[spp,70] (* Harvey P. Dale, Jun 12 2022 *)
  • PARI
    for(n=1, 70, print1(n * sum(i=2, floor(n/2), floor(bigomega(i) * moebius(i)^2 / 2) * floor(2*moebius(i)^2 / bigomega(i)) * floor(bigomega(n - i)* moebius(i)^2 / 2) * floor(2*moebius(n - i)^2 / bigomega(n - i))),", "))  \\ Indranil Ghosh, Mar 09 2017, translated from Maple code

Formula

a(n) = n * Sum_{k=1..floor(n/2)} c(k) * c(n-k), where c = A280710. - Wesley Ivan Hurt, Aug 31 2025