A280832 Sum of the parts in the partitions of n into two squarefree semiprimes.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 16, 0, 0, 0, 40, 21, 0, 0, 24, 25, 0, 27, 56, 29, 30, 31, 64, 0, 0, 35, 108, 37, 0, 39, 80, 82, 42, 86, 132, 90, 0, 94, 192, 147, 50, 0, 156, 106, 108, 110, 168, 114, 0, 118, 240, 305, 0, 63, 128, 195, 132, 201, 340, 138, 140
Offset: 1
Examples
a(20) = 40; there are two partitions of n into two squarefree semiprimes: (14,6) and (10,10). The sum of the parts in these partitions is 40.
Links
Programs
-
Maple
with(numtheory): A280832:=n->n*add(floor(bigomega(i)*mobius(i)^2/2)*floor(2*mobius(i)^2/bigomega(i))*floor(bigomega(n-i)*mobius(i)^2/2)*floor(2*mobius(n-i)^2/bigomega(n-i)), i=2..floor(n/2)): seq(A280832(n), n=1..100);
-
Mathematica
Table[n Sum[Floor[PrimeOmega[i] MoebiusMu[i]^2/2] Floor[2 MoebiusMu[i]^2 / PrimeOmega[i]] Floor[PrimeOmega[n - i] MoebiusMu[i]^2 / 2] Floor[2 MoebiusMu[n - i]^2 / PrimeOmega[n - i]], {i, 2, Floor[n/2]}], {n, 1, 70}] (* Indranil Ghosh, Mar 09 2017, translated from Maple code *) spp[n_]:=Total[Flatten[Select[IntegerPartitions[n,{2}],AllTrue[#,SquareFreeQ] && PrimeOmega[ #]=={2,2}&]]]; Array[spp,70] (* Harvey P. Dale, Jun 12 2022 *)
-
PARI
for(n=1, 70, print1(n * sum(i=2, floor(n/2), floor(bigomega(i) * moebius(i)^2 / 2) * floor(2*moebius(i)^2 / bigomega(i)) * floor(bigomega(n - i)* moebius(i)^2 / 2) * floor(2*moebius(n - i)^2 / bigomega(n - i))),", ")) \\ Indranil Ghosh, Mar 09 2017, translated from Maple code
Formula
a(n) = n * Sum_{k=1..floor(n/2)} c(k) * c(n-k), where c = A280710. - Wesley Ivan Hurt, Aug 31 2025