cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280865 Expansion of 1/(1 - Sum_{k>=0} x^((2*k+1)^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 33, 37, 42, 48, 55, 63, 72, 82, 93, 105, 118, 132, 147, 163, 180, 198, 217, 237, 258, 280, 303, 327, 352, 378, 405, 433, 463, 496
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 09 2017

Keywords

Comments

Number of compositions (ordered partitions) of n into odd cubes (A016755).

Examples

			a(28) = 3 because we have [27, 1], [1, 27] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 82; CoefficientList[Series[1/(1 - Sum[x^(2 k + 1)^3, {k, 0, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=0} x^((2*k+1)^3)).