cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280880 Number T(n,k) of set partitions of [n] into exactly k blocks where sizes of distinct blocks are coprime; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 4, 6, 1, 0, 1, 15, 10, 10, 1, 0, 1, 6, 75, 20, 15, 1, 0, 1, 63, 21, 245, 35, 21, 1, 0, 1, 64, 476, 56, 630, 56, 28, 1, 0, 1, 171, 540, 2100, 126, 1386, 84, 36, 1, 0, 1, 130, 4185, 2640, 6930, 252, 2730, 120, 45, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 09 2017

Keywords

Examples

			T(5,1) = 1: 12345.
T(5,2) = 15: 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 1345|2, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234, 1|2345.
T(5,3) = 10: 123|4|5, 124|3|5, 125|3|4, 134|2|5, 135|2|4, 1|234|5, 1|235|4, 145|2|3, 1|245|3, 1|2|345.
T(5,4) = 10: 12|3|4|5, 13|2|4|5, 1|23|4|5, 14|2|3|5, 1|24|3|5, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45.
T(5,5) = 1: 1|2|3|4|5.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,   1;
  0, 1,   3,    1;
  0, 1,   4,    6,    1;
  0, 1,  15,   10,   10,    1;
  0, 1,   6,   75,   20,   15,    1;
  0, 1,  63,   21,  245,   35,   21,    1;
  0, 1,  64,  476,   56,  630,   56,   28,   1;
  0, 1, 171,  540, 2100,  126, 1386,   84,  36,  1;
  0, 1, 130, 4185, 2640, 6930,  252, 2730, 120, 45, 1;
		

Crossrefs

T(n+k,n) for k=0-4 give: A000012, A000217, A000292, A051880(n-1) if n>0, A000389(n+4).
Row sums give A280275.
T(2n,n) gives A280889.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, s) option remember; expand(
          `if`(n=0 or i=1, x^n, b(n, i-1, select(x->x<=i-1, s))+
          `if`(i>n or factorset(i) intersect s<>{}, 0, x*b(n-i, i-1,
          select(x->x<=i-1, s union factorset(i)))*binomial(n, i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, {})):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = Expand[If[n == 0 || i == 1, x^n, b[n, i - 1, Select[s, # <= i - 1 &]] + If[i > n || FactorInteger[i][[All, 1]]  ~Intersection~ s != {}, 0, x*b[n - i, i - 1, Select[ s ~Union~ FactorInteger[i][[All, 1]], # <= i - 1 &]]*Binomial[n, i]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, {}]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 20 2017, after Alois P. Heinz *)