A280880 Number T(n,k) of set partitions of [n] into exactly k blocks where sizes of distinct blocks are coprime; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 4, 6, 1, 0, 1, 15, 10, 10, 1, 0, 1, 6, 75, 20, 15, 1, 0, 1, 63, 21, 245, 35, 21, 1, 0, 1, 64, 476, 56, 630, 56, 28, 1, 0, 1, 171, 540, 2100, 126, 1386, 84, 36, 1, 0, 1, 130, 4185, 2640, 6930, 252, 2730, 120, 45, 1
Offset: 0
Examples
T(5,1) = 1: 12345. T(5,2) = 15: 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 1345|2, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234, 1|2345. T(5,3) = 10: 123|4|5, 124|3|5, 125|3|4, 134|2|5, 135|2|4, 1|234|5, 1|235|4, 145|2|3, 1|245|3, 1|2|345. T(5,4) = 10: 12|3|4|5, 13|2|4|5, 1|23|4|5, 14|2|3|5, 1|24|3|5, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45. T(5,5) = 1: 1|2|3|4|5. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 1, 3, 1; 0, 1, 4, 6, 1; 0, 1, 15, 10, 10, 1; 0, 1, 6, 75, 20, 15, 1; 0, 1, 63, 21, 245, 35, 21, 1; 0, 1, 64, 476, 56, 630, 56, 28, 1; 0, 1, 171, 540, 2100, 126, 1386, 84, 36, 1; 0, 1, 130, 4185, 2640, 6930, 252, 2730, 120, 45, 1;
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Wikipedia, Coprime integers
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n, i, s) option remember; expand( `if`(n=0 or i=1, x^n, b(n, i-1, select(x->x<=i-1, s))+ `if`(i>n or factorset(i) intersect s<>{}, 0, x*b(n-i, i-1, select(x->x<=i-1, s union factorset(i)))*binomial(n, i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, {})): seq(T(n), n=0..12);
-
Mathematica
b[n_, i_, s_] := b[n, i, s] = Expand[If[n == 0 || i == 1, x^n, b[n, i - 1, Select[s, # <= i - 1 &]] + If[i > n || FactorInteger[i][[All, 1]] ~Intersection~ s != {}, 0, x*b[n - i, i - 1, Select[ s ~Union~ FactorInteger[i][[All, 1]], # <= i - 1 &]]*Binomial[n, i]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, {}]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 20 2017, after Alois P. Heinz *)