cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A051880 a(n) = binomial(n+4,4)*(2*n+1).

Original entry on oeis.org

1, 15, 75, 245, 630, 1386, 2730, 4950, 8415, 13585, 21021, 31395, 45500, 64260, 88740, 120156, 159885, 209475, 270655, 345345, 435666, 543950, 672750, 824850, 1003275, 1211301, 1452465, 1730575, 2049720, 2414280, 2828936, 3298680, 3828825, 4425015, 5093235
Offset: 0

Views

Author

Barry E. Williams, Dec 14 1999

Keywords

Comments

Old name was: Partial sums of A051799.

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-16.

Crossrefs

Cf. A051799.
Cf. A093645 ((10, 1) Pascal, column m=5).
A diagonal of A280880.

Programs

  • Mathematica
    Nest[Accumulate[#]&,Table[n(n+1)(10n-7)/6,{n,0,50}],2] (* Harvey P. Dale, Nov 13 2013 *)

Formula

a(n) = C(n+4, 4)*(2n+1).
G.f.: (1+9*x)/(1-x)^6.
From Amiram Eldar, Sep 04 2025: (Start)
Sum_{n>=0} 1/a(n) = 128*log(2)/35 - 152/105.
Sum_{n>=0} (-1)^n/a(n) = 32*Pi/35 + 596/105 - 384*log(2)/35. (End)

Extensions

Name changed by Alois P. Heinz, Jan 09 2017

A280275 Number of set partitions of [n] where sizes of distinct blocks are coprime.

Original entry on oeis.org

1, 1, 2, 5, 12, 37, 118, 387, 1312, 4445, 17034, 73339, 342532, 1616721, 7299100, 31195418, 129179184, 578924785, 3057167242, 18723356715, 120613872016, 738703713245, 4080301444740, 20353638923275, 95273007634552, 443132388701107, 2149933834972928
Offset: 0

Views

Author

Alois P. Heinz, Dec 30 2016

Keywords

Examples

			a(n) = A000110(n) for n<=3.
a(4) = 12: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
a(5) = 37: 12345, 1234|5, 1235|4, 123|45, 123|4|5, 1245|3, 124|35, 124|3|5, 125|34, 12|345, 125|3|4, 12|3|4|5, 1345|2, 134|25, 134|2|5, 135|24, 13|245, 135|2|4, 13|2|4|5, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 1|23|4|5, 145|2|3, 14|2|3|5, 1|245|3, 1|24|3|5, 1|2|345, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.
		

Crossrefs

Row sums of A280880.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, s) option remember;
          `if`(n=0 or i=1, 1, b(n, i-1, select(x->x<=i-1, s))+
          `if`(i>n or factorset(i) intersect s<>{}, 0, b(n-i, i-1,
          select(x->x<=i-1, s union factorset(i)))*binomial(n, i)))
        end:
    a:= n-> b(n$2, {}):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = Expand[If[n==0 || i==1, x^n, b[n, i-1, Select[s, # <= i-1&]] + If[i>n || FactorInteger[i][[All, 1]] ~Intersection~ s != {}, 0, x*b[n-i, i-1, Select[s ~Union~ FactorInteger[i][[All, 1]], # <= i-1&]]*Binomial[n, i]]]];
    a[n_] := b[n, n, {}] // CoefficientList[#, x]& // Total;
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)

Formula

a(n) = Sum_{k=0..n} A280880(n,k).

A194924 The number of set partitions of {1,2,...,n} into exactly two subsets A,B such that the greatest common divisor of |A| and |B| = 1.

Original entry on oeis.org

1, 3, 4, 15, 6, 63, 64, 171, 130, 1023, 804, 4095, 2380, 7920, 16384, 65535, 40410, 262143, 246640, 582771, 695860, 4194303, 2884776, 13455325, 11576916, 44739243, 65924824, 268435455, 176422980, 1073741823, 1073741824, 2669774811, 3128164186, 11421338075
Offset: 2

Views

Author

Geoffrey Critzer, Oct 12 2011

Keywords

Comments

a(p)=2^(p-1)-1 = S2(p,2) where p is a prime and S2(n,k) is the Stirling number of the second kind.
a(n) is the coefficient of x^n/n! in the Taylor series expansion of B(A(x)) where A(x)= Sum_{over positive integers relatively prime to n}x^n/n! and B(x)=x^2/2!.

Crossrefs

Column k=2 of A280880.

Programs

  • Maple
    a:= n-> `if`(n=2, 1, add(`if`(igcd(k, n-k)=1,
                         binomial(n, k), 0), k=1..iquo(n, 2))):
    seq(a(n), n=2..50); # Alois P. Heinz, Nov 02 2011
  • Mathematica
    f[list_]:=x^First[list]/First[list]!+x^Last[list]/Last[list]!;
    Prepend[Table[a=Total[Map[f,Select[IntegerPartitions[n,2],Apply[GCD,#]==1&]]];Last[Range[0,n]! CoefficientList[Series[a^2/2!,{x,0,n}],x]],{n,3,30}],1]
    (* Second program: *)
    a[n_] := If[n == 2, 1, Sum[If[GCD[k, n-k] == 1, Binomial[n, k], 0], {k, 1, Quotient[n, 2]}]];
    a /@ Range[2, 50] (* Jean-François Alcover, Jun 09 2021, after Alois P. Heinz *)

A280881 Number of set partitions of [n] into exactly three blocks where sizes of distinct blocks are coprime.

Original entry on oeis.org

1, 6, 10, 75, 21, 476, 540, 4185, 1375, 47850, 10374, 249431, 395955, 2572680, 278392, 30877389, 5000211, 214159070, 291693150, 1465649955, 1224138223, 23284864476, 13175039700, 157019230225, 198060711381, 1510657970346, 1118209769530, 18176060999625
Offset: 3

Views

Author

Alois P. Heinz, Jan 09 2017

Keywords

Examples

			a(3) = 1: 1|2|3.
a(4) = 6: 12|3|4, 13|2|4, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
a(5) = 10: 123|4|5, 124|3|5, 125|3|4, 134|2|5, 135|2|4, 1|234|5, 1|235|4, 145|2|3, 1|245|3, 1|2|345.
a(7) = 21: 12345|6|7, 12346|5|7, 12347|5|6, 12356|4|7, 12357|4|6, 12367|4|5, 12456|3|7, 12457|3|6, 12467|3|5, 12567|3|4, 13456|2|7, 13457|2|6, 13467|2|5, 13567|2|4, 1|23456|7, 1|23457|6, 1|23467|5, 1|23567|4, 14567|2|3, 1|24567|3, 1|2|34567.
		

Crossrefs

Column k=3 of A280880.

A280882 Number of set partitions of [n] into exactly four blocks where sizes of distinct blocks are coprime.

Original entry on oeis.org

1, 10, 20, 245, 56, 2100, 2640, 36795, 8140, 542542, 72436, 3311945, 6050240, 91668080, 2505120, 1972220235, 92327460, 5331136090, 6360277000, 320219686633, 29187262016, 4567704520100, 3125812500200, 39433339579725, 19033980625296, 2173716576665550
Offset: 4

Views

Author

Alois P. Heinz, Jan 09 2017

Keywords

Crossrefs

Column k=4 of A280880.

A280883 Number of set partitions of [n] into exactly five blocks where sizes of distinct blocks are coprime.

Original entry on oeis.org

1, 15, 35, 630, 126, 6930, 9570, 202455, 35035, 3612609, 361725, 25350780, 50620220, 1262865060, 15864468, 33652405845, 942571665, 68217941715, 72924794635, 7281932609490, 364040548850, 111203641740750, 79780936522950, 2097251547484275, 471615091340211
Offset: 5

Views

Author

Alois P. Heinz, Jan 09 2017

Keywords

Crossrefs

Column k=5 of A280880.

A280884 Number of set partitions of [n] into exactly six blocks where sizes of distinct blocks are coprime.

Original entry on oeis.org

1, 21, 56, 1386, 252, 18942, 28512, 837837, 122122, 17600583, 1445808, 140411908, 301302288, 10781435088, 79318464, 333208994139, 6813685494, 597189699029, 582524800704, 89346032143830, 3151550453480, 1467268659100530, 1095411461933880, 45383787697612455
Offset: 6

Views

Author

Alois P. Heinz, Jan 09 2017

Keywords

Crossrefs

Column k=6 of A280880.

A280885 Number of set partitions of [n] into exactly seven blocks where sizes of distinct blocks are coprime.

Original entry on oeis.org

1, 28, 84, 2730, 462, 45276, 73788, 2849847, 365365, 69293224, 4913272, 623100660, 1424294340, 67844069880, 333126696, 2369968906305, 38838853515, 4030108023172, 3637504185700, 767066790520030, 21258921662550, 13536000500234940, 10485013256679780
Offset: 7

Views

Author

Alois P. Heinz, Jan 09 2017

Keywords

Crossrefs

Column k=7 of A280880.

A280886 Number of set partitions of [n] into exactly eight blocks where sizes of distinct blocks are coprime.

Original entry on oeis.org

1, 36, 120, 4950, 792, 97812, 171600, 8384805, 972400, 233084280, 14734512, 2345611788, 5678805120, 343522980720, 1221436128, 13374187844391, 185339038104, 22390031621100, 18903665638000, 5148292859617050, 118997530835040, 97446697480400580, 78169931776006200
Offset: 8

Views

Author

Alois P. Heinz, Jan 09 2017

Keywords

Crossrefs

Column k=8 of A280880.

A280887 Number of set partitions of [n] into exactly nine blocks where sizes of distinct blocks are coprime.

Original entry on oeis.org

1, 45, 165, 8415, 1287, 195195, 366795, 22046310, 2358070, 693870606, 39982878, 7765924530, 19829897010, 1474459789770, 4013220090, 63387586762335, 769009559175, 106739428871075, 85029993637875, 28720696235896665, 574973722599705, 581923529546044725
Offset: 9

Views

Author

Alois P. Heinz, Jan 09 2017

Keywords

Crossrefs

Column k=9 of A280880.
Showing 1-10 of 12 results. Next