A280891 Number of certain noncrossing set partitions.
1, 4, 12, 37, 118, 387, 1298, 4433, 15366, 53924, 191216, 684114, 2466428, 8951945, 32683230, 119949945, 442281030, 1637618400, 6086481720, 22699003830, 84918443220, 318593346630, 1198421583684, 4518886787802, 17077448924828, 64671604514552, 245380598678208, 932708665735364, 3551238550341944, 13542393822575541
Offset: 1
Keywords
Examples
X_4 has the following 10 elements: 1|2|3|4, 12|3|4, 1|23|4, 1|24|3, 14|2|3, 1|234, 124|3, 14|23, 134|2, 1234. The a(2)=4 elements in which 2 and 3 are in the same block are 1|23|4, 1|234, 14|23, 1234.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- H. Gao and R. Schiffler, On the Number of τ-Tilting Modules over Nakayama Algebras, SIGMA 16 (2020), 058.
- H. Mühle, Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces, arXiv:1701.02109 [math.CO], 2017.
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016.
- Qi Wang, Tau-tilting finite simply connected algebras, arXiv:1910.01937 [math.RT], 2019.
Programs
-
Mathematica
CoefficientList[Series[(1 + x) (1 - 3 x - (1 - x) Sqrt[1 - 4 x])/(2 x^2), {x, 0, 30}], x] (* Michael De Vlieger, Jan 03 2020 *)
-
PARI
C(n)=binomial(2*n,n)/(n+1); vector(66,n,C(n + 1) - C(n - 1)) \\ Joerg Arndt, Apr 19 2017
Formula
a(n) = C(n + 1) - C(n - 1) where C(n) is the n-th Catalan number (A000108). - Joel B. Lewis, Apr 19 2017
G.f.: (1 + x)*(1 - 3*x - (1 - x)*sqrt(1 - 4*x))/(2*x^2). - Ilya Gutkovskiy, Apr 20 2017
Comments